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VII. 4 Memoir on Cubic Surfaces. By Professor Cavey, F.R.S.

Received November 12, 1868,—Read January 14, 1869,

THE present Memoir is based upon, and is in a measure supplementary to that by Pro-
fessor ScHLAFLI, “ On the Distribution of Surfaces of the Third Order into Species, in
reference to the presence or absence of Singular Points, and the reality of their Lines,”
Phil. Trans. vol. cliii. (1863) pp. 193-241. But the object of the Memoir is different.
I disregard altogether the ultimate division depending on the reality of the lines, attend-
ing only to the division into (twenty-two, or as I prefer to reckon it) twenty-three cases
depending on the nature of the singularities. And I attend to the question very much
on account of the light to be obtained in reference to the theory of Reciprocal Surfaces.
The memoir referred to furnishes in fact a store of materials for this purpose, inasmuch
as it gives (partially or completely developed) the equations in plane-coordinates of the
several cases of cubic surfaces, or, what is the same thing, the equations in point-coor-
dinates of the several surfaces (orders 12 to 8) reciprocal to these repectively. I found
by examination of the several cases, that an extension was required of Dr. SALMON’S
theory of Reciprocal Surfaces in order to make it applicable to the present subject; and
the preceding “ Memoir on the Theory of Reciprocal Surfaces ” was written in connexion
with these investigations on Cubic Surfaces. The latter part of the Memoir is divided
into sections headed thus:— Section I=12, equation (X, Y, Z, W)’=0" &ec. referring
to the several cases of the cubic surface; but the paragraphs are numbered continuously
through the Memoir. '

The tfwmty -three Cases of Cubic Surfaces—Explanations and Table of Singularities.
Article Nos. 1 to 13.

1. T designate as follows the twenty-three cases of cubic surfaces, adding to each of
them its equation :

I =12 (X, Y, Z, W)'=0,

I =12—-C, W(a, b, ¢, f, 9, XX, Y, Z)+25XYZ=0,
III =12—B, OW(X+Y +2Z)(IX +mY +nZ)+2EXYZ=0,
IV =12—2C,,  WXZ4Y(yZ-+dW)+(a, b, ¢, dYX, Y)=
V =12—B, WXZ+ (X 4+Z)(Y2— aX?— 12 =0,

VI =12—B,—C,, WXZ+YZ+(a, b, ¢, XX, Y=
VII=12—B, WXZ A+ Y74 YX2—Z=0,
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232 PROFESSOR CAYLEY ON CUBIC SURFACES.

VII =12—38C, Y+ Y¥X+Z+W)+4aXZW=0,
IX =12-2B,  WXZ+(a, b, ¢, dYX, Y)=0,
X  =12—B,—C, WXZ+(X+Z)(Y'—X?)=0,
XI  =12—B, WXZ + Y7+ X —77=0,
XII =12-T, W(X+Y+Z)p+XYZ=0,
XTI =12—B,—2C,, WXZ+Y¥X+Y+7Z)=0,
XIV =12—B,—C, WXZ+YZ+YX*=0,

XV =12-T, WX X724 V*Z=0,

XVI =12-4C,  W(XY+XZ+YZ)+XYZ=0,
XVII =12—2B,—C,, WXZ+XY?>+Y* =0,

XVII =12—B,—2C,, WXZ+(X+7)Y*=0,

XIX =12—B;—C, WXZ+Y7Z+X* =0,

XX =12-T, WXe+ X724 Y =0,

XXI =12—3B,,  WXZ+Y'=0,

XXII = 3,81, 1), WX4ZY*=0,

XXII= 8, ST, 1), X(WX+YZ)+Y*=0;

2. Where C, denotes a conic-node diminishing the class by 2; B,, B,, B;, B; a biplanar
node diminishing (as the case may be) the class by 3, 4, 5, or 6; and U, U,, U, a uni-
planar node diminishing (as the case may be) the class by 6, 7,or 8. The affixed expla-
nation, which I shall usually retain in connexion with the Roman number, shows there-
fore in each case what the class is, and also the singularities which cause the reduction :
thus XTI1=12—B,—2C, indicates that there is a biplanar node, B,, diminishing the
class by 3, and two conic-nodes, C,, each diminishing the class by 2 ; and thus that the
class is 12—38—2.2, =8. As regards the cases XXII and XXIII, these are surfaces
having a nodal right line, and are consequently scrolls, each of the class 3, viz. XXTT is
the scroll S(1, 1) having a simple directrix right line distinct from the nodal line, and
XXIIT is the scroll S(1, 1) having a simple directrix right line coincident with the nodal
line: see as to this my ¢ Second Memoir on Skew Surfaces, otherwise Scrolls,” Phil.
Trans, vol. cliv. (1864) pp. 559-577.

3. The nature of the points C,, B,, B,, B, Bs, U;, U,, U, requires to be explained.

C(=C,) is a conic-node, where, instead of the tangent plane, we have a proper quadric
cone. _

B(=B,, B,, B, or By) is a biplanar-node, where the quadric cone becomes a plane-pair
(two distinct planes): the two planes are called the biplanes, and their line of intersec-
tion is the edge: ’

In B,, the edge is not a line on the surface—in the other cases it is; this implies that
the surface is touched along the edge by a plane, viz. in B,, B; the edge is torsal, in B;
it is oscular:
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In B,, the tangent plane is distinct from each of the biplanes:

In B;, the tangent plane coincides with one of the biplanes; we have thus an ordinary
biplane, and a torsal biplane:

In B;, the tangent plane coinciding with one of the biplanes becomes oscular; we
have thus an ordinary biplane, and an oscular biplane.

U(=U,, U, or Uy) is a uniplanar-node, where the quadric cone becomes a coincident
plane-pair ; say, the plane is the uniplane. It is to be observed that there is not in this
case any edge. The uniplane meets the cubic surface in three lines, or say “rays,”
passing through the uniplanar-node, viz.

In U, the rays are three distinct lines:

In U,, two of them coincide:

In U, they all three coincide.

4. To connect these singular points with the theory of the preceding Memoir, it is to
be observed that they are respectively equivalent to a certain number of the cnicnodes
C(=C,) and binodes B(=B;), viz. we have

C,= C,
B,= B,
B,=2C,
B,= C+ B,
JB,~,=3C,
| Us=3C,
U,=2C+ B,
U,= C+2B.

5. I take the opportunity of remarking that although the expressions cnicnode and
binode properly refer to the simple singularities C and B, yet as C,=C, C; is properly
spoken of as a cnicnode, and we may (using the term binode as an abbreviation for
biplanar-node) speak of any of the singularities B, B,, B;, Bs as a binode. Thus the
surface X=12—B,—C, has a binode B, and a cnicnode C,; although theoretically the
binode B, is equivalent to two cnicnodes, and the surface belongs to those with three
cnicnodes, or for which C=38. I use also the expression unode for shortness, instead
of uniplanar-node, to denote any of the singularities Us, U,, Us.

6. The foregoing equations (substantially the same as ScHLAFLI'S) are Canonical forms ;
the reduction of the equation of any case of surface to the above form is not always
obvious. It would appear that each equation is from its simplicity in the form best
adapted to the separate discussion of the surface to which it belongs; there is the disad-
vantage that the equations do not always (when from the geometrical connexion of the sur-
faces they ought to do so) lead the one to the other; for instance, V=12—B, includes
VII=12—B,, but we cannot from the equation WXZ+(X+Z)(Y?—aX?—bZ*)=0 of
the former pass to the equation WXZ-4Y?*Z+4YX?—X?=0 of the latter, This would
be a serious imperfection if the object were to form a theory of the quaternary function
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(X, Y, Z, W)*; but the equations are in the present Memoir used only as means to an
end, the establishment of the geometrical theory of the surfaces to which they respec-
tively belong, and the imperfection is not material.

7. I have used the capital letters (X, Y, Z, W) in place of ScmLArLLS (2, ¥, 2, w),
reserving these in place of his (p, ¢, 7, s) for plane-coordinates of the cubic surfaces, or
(what is the same thing) point-coordinates of the reciprocal surfaces; but I have in
several cases interchanged the coordinates (X, Y, Z, W) so that they do not in this order
correspond to SCHLAFLLS (, ¥, 2, w): this has been done so as to obtain a greater uni-
formity in the representation of the surfaces. To explain this, let. A, B, C, D be the
vertices of the tetrahedron formed by the coordinate planes A=YZW, B=72WX,
C=WXY, D=XYZ; the coordinate planes have been chosen so that determinate
vertices of the tetrahedron shall correspond to determinate singularities of the surface.

8. Consider first the surfaces which have no nodes B or U. - It is clear that the nodes
C, might have been. taken at any vertices whatever of the tetrahedron; they are taken
thus: there is always a node C, at D; when there is a second node C,, this is at C, the.
third one is at A, and the fourth at B. . ‘

9. Consider next the surfaces which have a binode B,, B,, B, or B;; this is taken to
be at D, and the biplanes to be X=0, Z=0% (the edge being therefore DB), viz. in
B, or By, where the distinction arises, X=0 is the ordinary biplane, Z=0 the torsal or
(as the case may be) oscular biplane. If there is a second node, this of necessity lies in
an ordinary biplane ; it may be and is taken to be in the biplane X=0,at C. I suppose
for a moment that this is a node C,. It is only when the binode is B; or B, that there
can be a third node, for it is only in these cases that there is a second ordinary biplane
Z=0; but in these cases respectively the third node, a C,, may be and is taken to be in
the biplane Z=0, at A.

10. The only case of two binodes is when each is a B,. Here the first is as above at
D, its biplanes being X=0, Z=0; and the second is as above in the biplane X =0,
at C; the biplanes thereof are then X=0 (which is thus a biplane common to the
two binodes, or say a.common biplane), and a remaining biplane which may be and is
taken to be W=0. If there is a third node, this may be either C, or B, but it will in
either case lie in the biplane Z=0 of the first binode, and also in the biplane W=0 of
the second binode, that is, in the line BA ; and it may be and is taken to be at A; if a
binode, then its biplanes are of necessity Z=0, W=0; and the plane Y=0 will be the
plane through the three binodes D, C, A.

11. If there is a unode, then this may be and is taken to be at D, and its uniplane
may be taken to be X=0; in the surface XII=12—U, the uniplane is, however,
taken to be X4Y +Z=0. There is never, besides the unode, any other node.

12. The result is that the nodes, in the order of their speciality, are in the equations
taken to be at D, C, A, B respectively; and that (except in the case III=12—1,) the
biplanes of the first binode are X=0, Z=0 (for a binode B; or B;, X=0 being the
ordinary biplane, Z=0 the special biplane), those of the second binode X =0, W=0,

“# In the -case, however, of a single B,, III=12—B,, the biplanes are taken to be X4+Y+Z=0,
IX4mY +nZ=0. ; ,
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those of the third binede Z=0, W=0, and that (except in the case XII=12—Ts) the

=12—-2B,—C,, as represented

For example, in the surface XVII

0.

uniplane is X

0,

0 the common biplane), and

P

0,7

0, we have a B, at D, the biplanes being X

by its equation WXZ 4 Y*Z--X?

a B, at C, the biplanes being X=0, W

a C, at A.

0 (therefore X

13. It will be convenient (anticipating the results of the investigations contained in
the present Memoir) to give at once the following Table of Singularities; the several

‘symbols have of course the significations explained in the former Memoir.
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Explanation in regard to the determination of the number of certain singularities.
Article Nos. 14 to 19.

14. In the several cases I to XXI, we have a cubic surface (n=3), with singular
points C and B but without singular lines. The section by an arbitrary plane is thus
a curve, order n=3, that is, a cubic curve, without nodes or cusps, and therefore of the
class ¢ =6, having =0 double tangents and '=9 inflexions. The tangent cone
with an arbitrary point as vertex is a cone of the order ¢=6, having in the case
I=12, 3=0 nodal lines and =6 cuspidal lines, but with (in the several other cases) C
nodal lines and B cuspidal lines (or rather singular lines tantamount to C double lines
and B cuspidal lines): the class of the cone, or order of the 1e01plocal surface, is thus
n'=6.5—2(0+C)—3(6+B)=12—2B—3C.

15. In the general case I=12, there are on the cubic surface 27 lines, lying by 3’s in
45 planes; these 27 lines constitute the node-couple curve of the order ¢ =27, and the
node-couple torse consists of the pencils of planes through these lines respectively, being
thus of the class ¢'=0'=2T7; the 45 planes are triple tangent planes of the node-couple
torse, which has thus #=45 triple tangent planes. Butin the other casesitis only certain
of the 27 lines, say the “facultative lines” (as will be explained), which constitute the
node-couple curve of the order¢': the pencils of planes through these lines constitute the
node-couple torse of the class ¥’ =¢'; the ¢ planes, each containing three facultative lines,
are the triple tangent planes of the node-couple torse. Or if (as is somewhat more con-
venient) we refer the numbers &', ¢' to the reciprocal surface, then the lines, reciprocals
of the facultative lines, constitute the nodal curve of the order 4'; and the points ¢, each
containing three of these lines, are the triple points of the nodal curve. Inasmuch as
the nodal curve consists of right lines, the number £ of its apparent double points
is given by the formula 2F=0"—0—6¢; and comparing with the formula
¢ =0"—b -2k —3y'—6¢', we have ¢'+3y'=0, that is, ¢ =0 (¢ the class of the nodal
curve), and also y'=0.

16. In the general case I=12, the spinode curve is the complete intersection of the
cubic surface by the Hessian surface of the order 4, and it is thus of the order ¢ =12;
but in the other cases the complete intersection consists of the spinode curve together
with certain right lines not belonging to the curve, and the spinode curve is of an order
¢' less than 12: this will be further explained, and the reduction accounted for (see
post, Nos. 24 ¢t seq.).

17. Again, in the general case I=12, each of the 27 lines is a double tangent of the
spinode curve, and the tangent planes of the surface at the points of contact are common
tangent planes of the spinode torse and the node-couple torse, stationary planes of the
spinode torse; or we have 3'=2¢=>564. In the other cases, however, instead of the 27
lines we must take only the facultative lines, each of which is or is not a double or a
single tangent of the spinode curve; and the tangent planes of the surface at the points
of contact are the common tangent planes as above—that is, the number of contacts
gives (3, not in general=2¢.
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18. There are not, except as above, any common tangent planes of the two torses,
that is, not only ¢'=0 as already mentioned, but also #=0. I do not at present account
& priort for the values 6'=16, 8, and 16, which present themselves in the Table. The
cubic surface cannot have a plane of conic contact, and we have thus in every case
C'=0; but the value of B' is not in every case =0.

19. In what precedes we see how a discussion of the equation of the cubic surface
should in the several cases respectively lead to the values &, ¢, ¢, ¢, 3,7, %, B/, and
how in the reciprocal surface the nodal curve of the order # is known by means of the
facultative lines of the original cubic surface. The cuspidal curve ¢’ might also be
obtained as the reciprocal of the spinode-torse; but this would in general be a laborious
process, and it is the less necessary, inasmuch as the equation of the reciprocal surface
is in each case obtained in a form putting in evidence the cuspidal curve.

The Lines and Planes of a Cubic Surface ; Facultative Lines ; Explanation of Diagrams.
Article Nos. 20 to 23.

- 20. In the general surface I=12, we have 27 lines and 45 triple-tangent planes, or
say simply, planes: through each line pass 5 planes, in each plane lie 3 lines. For the
surfaces II to XXTI (the present considerations do not of course apply to the Scrolls)
several of the lines come to coincide with each other, and several of the planes also
come to coincide with each other; but the number of the lines is always reckoned as 27,
and that of the planes as 45. If we attend to the distinct lines and the distinct planes,
each line has a multiplicity, and the sum of these is==27; and so each plane has a mul-
tiplicity, and the sum of these is=45. Again, attending to a particular line in a par-
ticular plane, the line has a frequency 1, 2, or 3, that is, it represents 1, 2, or 3 of the 3
lines in the plane (this is in fact the distinction of a scrolar, torsal, or oscular line); and
similarly, the plane has a frequency 1, 2, 3, 4, or §, according to the number which it
represents of the & planes through the line. It requires only a little consideration to
perceive that the multiplicity of the plane into its frequency in regard to the line is equal
to the multiplicity of the line into its frequency in regard to the plane. Observe, further,
that if M be the multiplicity of the plane, then, considering it in regard to the lines con-
tained therein, we get the products (M, M, M), (2M, M), or 3M, according as the three
lines are or are not distinct, but that the sum of the products is always=38M, and that in
regard to all the planes the total sum is 3 45, =135. And so if M' be the multipli-
city of the line, then, considering it in regard to the planes which pass through it, we get
the products (M, M/, M', M/, M), (2M, M/, M/, M) . . . (M), as the case may be, but
that the sum of the products is =M/, and that in regard to all the lines the sum is
5x 27, =185, as before.
~ 21. Themode of coincidence of the lines and planes, and the several distinct lines and
planes which are situate in or pass through the several distinct planes and lines respec-
tively, are shown in the annexed diagrams I to XXI*: the multiplicity of each line

#* See the commencements of the several sections.
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appears by the upper marginal line, and that of each plane by the left-hand marginal
column (thus in diagram I, 27 X 1=27 and 45 X 1=45, 1 is the multiplicity of each line,
and it is also the multiplicity of each plane); the frequencies of a line and plane in regard
to each other appear by the dots in the square opposite to the line and plane in question,
these being read, for the frequency of the line vertically, and for the frequency of the
plane horizontally; thus " indicates that the frequency of the line is =3, and the
frequency of the plane is =2. There should be and are in every line of the diagram
3 dots, and in every column of the diagram 5 dots (a symbol i being read as just
explained, 2 dots in the line, 3 dots in the column). '

22. For the surface I=12, there is of course no distinction between the lines,
but these form only a single class, and the like for the planes; but for the other sur-
faces the lines and planes form separate classes, as shown in the diagrams by the lower
marginal explanation of the lines, and the right-hand marginal explanation of the
planes. I use here and elsewhere “ray” to denote a line passing through a single node ;
“axis” to denote a line joining two nodes; “edge” (as above) to denote the edge of a
binode; any other line is a ““mere line.” An axis is always torsal or oscular; when it
is torsal, the plane touching along the axis contains a third line which is the *trans-
versal” of such axis; buta transversal may be a mere line, a ray, or an axis; in the case
XVI=12—4C,, each transversal is a transversal in regard to two axes.

23. In the general case I=12, each of the 27 lines is, as already mentioned, part of
the node-couple curve; and the node-couple curve is made up of the 27 lines, and is
thus a curve of the order 27. In fact each plane through a line meets the cubic surface
in this line, and in a conic; the line and conic meet in two points, and the plane (that
is in any plane) through the line is thus a double tangent plane touching the surface at
the two points in question ; the locus of the points of contact, that is the line itself, is
thus part of the node-couple curve. But in the other cases, II to XXI, certain of the
lines do not belong to the node-couple curve (this will be examined in detail in the
several cases respectively); but I wish to show here how in a general way a line passing
through a node, say a nodal ray, is not part of the node-couple curve. To fix the ideas,
consider the surface II=12—C,; there are here through C, six lines, or say rays:
attending to any one of these, a plane through the ray meets the surface in the ray itself
and in a conic; the ray and the conic meet as before in two points, one of them being
the point C,: the plane touches the surface at the other point, dut ¢ does not touch the
surface at C,. (I am not sure, and T leave it an open question, whether we ought to say
that at a node C, there is no tangent plane, or to say that only the tangent planes of the
nodal cone are tangent planes of the surface; but, at any rate, an arbitrary plane through
C,is not a tangent plane.) The plane through the ray is only a single tangent plane,
not a double tangent plane; and the ray is not part of the node-couple curve. We say

that a line of the surface is or is not *facultative” according as it does or does not
form part of the node-couple curve. =~
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Axis; the different kinds thereof. Article Nos. 24 to 26.

24. ‘A line joining two nodes isan axis; such a line is always a line, and it is a torsal
or oscular line, of the surface. But some further distinctions are requisite; using the
expressions in their strict sense, cnicnode =C, binode =B, an axis is a CC-axis joining
two cnicnodes, or it is a CB-axis joining a cnicnode and a binode, or it is a BB-axis
joining two binodes. A CC-axis is torsal, the transversal being a mere line, not a ray
through either of the cnicnodes; a CB-axis is torsal, the transversal being a ray of the
binode; a BB-axis is oscular. The distinction is of course carried through as regards
the higher biplanar nodes B,, B;, B;, and the uniplanar nodes U, U,, U,: thus (B,=B)
the edge of a binode B, is not an axis at all, but (B,=2C) the edge of a binode B, is a
CC-axis; (B;=B+C) the edge of a binode B, is a CB-axis; (B;=3C) the edge of a
binode By is a thrice-taken CC-axis; (Us;=38C) each of the raysis regarded as a CC-axis;
(U,=B+-2C) the double ray is regarded as a twice-taken CB-axis, and the single ray as
a CC-axis; (U,=2B+-C) the rayis regarded as a BB-axis + a twice-taken CB-axis.

- 25, It has been mentioned that the intersection of the surface with the Hessian con-
sists of the spinode curve, together with certain right lines; these lines are in fact the
axes—yviz. the examination of the several cases shows that in the complete intersection
each CC-axis presents itself twice, each CB-axis 3 times, and each BB-axis 4 times. We
thus see that a CC-axis, or rather the torsal plane along such axis, is the pinch-plane or
singularity j/=1; the CB-axis, or rather the torsal plane along such axis, the close-
plane or singularity '=1; and the BB-axis, or oscular plane along such axis, the bitrope.
or smgulanty B'=1; for a cubic surface with singular lines the expression of ¢ being
in fact ¢’=12—25'— 3%/ —4B'. There are, however, some cases requiring explanation ;
thus for the case VIII=12—B,, where the edge is by what precedes a CB-axis, the
complete intersection is made up of the edge 4 times and of an octic curve; the con-
sideration of the reciprocal surface shows, however, that the edge taken once is really part
of the spinode curve (viz. that this curve is made up of the edge taken once and of the
octic curve, its order being thus ¢’=9); and the interpretation then of course is that the
intersection is made up of the edge taken 8 times (as for a CB-axis it should be) and of
the spinode curve.

26. I remark in further explanation, that in the several sections, in showing how the
complete intersection of the cubic surface with the Hessian is made up, I have not
referred to the axes in the above precise significations; thus XIV=12—B,—C,, the
binode B, is C4+B, and the edge is thus a CB-axis, while the axis B,C, is a CB-axis
+ a CC-axis (=141, =2, J=1). The complete intersection should therefore con-
sist of the spinode curve, 4+ edge .(as a CB-axis) 3 times -+ axis (as a CB-axis 4 a
CC-axis) 243, =5 times: it is in the section stated (in perfect consistency herewith,
but without the full explanation) that the intersection is made up of the axis 5 times,
the edge 4 times, and a cubic curve—which cubic curve together with the edge once
constitutes the spinode curve; and so in other cases: this explanatmn will, I think,
remove all difficulty.



240 PROFESSOR CAYLEY ON CUBIC SURFACES.

On the Determination of the Reciprocal Equation. Axticle Nos. 27 to 32.

27. Consider in general the cubic surface (xY(X, Y, Z, W)’=0, and in connexion
therewith the equation Xa+4Yy+Zz+ Ww=0, which regarding therein X, Y, Z, W as
current coordinates, and , ¥, 2, w as constants, is the equation of a plane. If from the
two equations we eliminate one of the coordinates, for instance W, we obtain

(O Xw, Yw, Zw, —(Xo+Yy+7Zz2))°=0,
which, (X, Y, Z) being current coordinates,”is obviously the equation of the cone, vertex
(X=0, Y=0, Z=0), which stands on the section of the cubic surface by the plane.
Equating to zero the discriminant of this function in regard to (X, Y, Z), we express
that the cone has a nodal line; that is, that the section has a node, or, what is the same
thing, that the plane aX+yY+2Z+4wW=0 is a tangent plane of the cubic surface;
and we thus by the process in fact obtain the equation of the cubic surface in the reci-
procal or plane coordinates («, 4, 2z, w). Consider in the same equation z, 7, 2z, w as
current coordinates, (X, Y, Z) as given parameters, the equation represents a system of
three planes, viz. these are the planes 4X +yY +2Z~+wW'=0, where W' has the three
values given by the equation (x{X, Y, Z, W')*=0, or, what is the same thing, X, Y, Z, W'
are the coordinates of any one of the three points of intersection of the cubic surface

2X+yY +2Z4+wW'=0
is the polar plane of this point in regard to a quadric surface X*+Y*+Z°+W*=0;
the equation
(= Xw, Yw, Zw, —(Xao+Yy+7Zz))’=0

is thus the equation of a system of 3 planes, the polar planes of three points of the cubic
surface (which three points lie on an arbitrary line through the point =0, y=0, 2=0).
In equating to zero the discriminant in regard to (X, Y, Z), we find the envelope of the
system of three planes, or say of a plane, the polar plane of an arbitrary point on the
cubic surface,—or we have the equation of the reciprocal surface, being, as is known, the.
same thing as the equation of the cubic surface in the reciprocal or plane coordinates.
(%,9,2 w). In what precedes we have the explanation of an ordinary process of finding
the equation of the reciprocal surface, this equation being thereby given by equating to
zero the discriminant of a function (xY(X, Y, Z), that is, of a ternary cubic function.

28. The process, as last explained, is a special one, viz. the position of a point on the
surface is determined by means of certain two parameters, the ratios X :Y : Z which fix
the position of the line joining this point with the point (=0, y=0, 2=0). More
generally we may consider the position of the point as determined by means of any two
parameters; the equation of the polar plane then contains the two parameters, and by
taking the envelope in regard to the two parameters considered as variable, we have the
equation of the reciprocal surface.

29. But let the parameters, say 4, ¢, be regarded as varying successively; if ¢ alone
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vary, we have on the surface a curve ©, the equation whereof contains the parameter ¢,
and when § varies this curve sweeps over the surface. The envelope in regard to ¢ of
the polar plane of a point of the surface is a torse, the reciprocal of the curve ®, and the
envelope of the torse is the reciprocal surface. In particular the curve ® may be the
plane section by any plane through a fixed line, say, by the plane P—4 Q=0; the section
is a cubic curve, the reciprocal is a sextic cone having its vertex in a fixed line (the reci-
procal of the line P=0, Q=0), -and the reciprocal surface is thus obtained as the enve-
lope of this cone ; assuming that the equation of the sextic cone has been obtained, this
is an equation of a certain order in the parameter 4; or writing /=P :Q, we obtain the
equation of the reciprocal surface by equating to zero the discriminant of a binary
function of (P, Q). |

80. With a variation, this process is a convenient one for obtaining the reciprocal of a
cubic surface: we take the fixed line to be one of the lines on the cubic surface; the
curve @ is then a conic, its reciprocal is a quadricone, and the envelope of this quadri-
cone is the required reciprocal surface. This is really what ScuLirL does (but the
process is not explained) in the several instances in which he obtains the equation of
the reciprocal surface by means of a binary function. I remark that it would be very
instructive, for each case of surface, to take the variable plane successively through the
several kinds of lines on the particular surface; the equation of the reciprocal surface
would thus be obtained under different forms, putting in evidence the relation to the
reciprocal surface of the fixed line made use of. But this is an investigation which I do
not enter upon: Iadoptin each case SCHLAFLI'S process, without explanation, and merely
write down the ternary or (as the case may be) binary function by means of which the
equation of the reciprocal surface is obtained.

81. It is to be mentioned that there is a reciprocal process of obtaining the equation
of the reciprocal surface; we may imagine, touching the cubic surface along any curve, a
series of planes; thatis, a torse circumscribed about the surface, and the equation whereof
contains a variable parameter ¢; the reciprocal figure is a curve, the equations whereof
contain the parameter ¢; the locus of this curve is the reciprocal surface; that is, the
equation of the reciprocal surface is obtained by eliminating ¢ from the equations of the
curve. In particular let the torse be the circumscribed cone having its vertex at any
point of a fixed line; the reciprocal figure is then a plane curve, the plane of which
‘passes through the line which is the reciprocal of the fixed line; it is moreover clear
that if the position of the vertex on the fixed line be determined by the parameter 4
linearly (for instance if the vertex be given as the intersection of the fixed line by a
plane P—6#Q=0), then the equation of the plane of the curve will be of the form
P'=0Q, containing the parameter 4 linearly ; the other equation of the plane curve will
contain 6 rationally, and the elimination will be at once effected by substituting in this
other equation for ¢ its value, =P'+Q'. And observe moreover that if the fixed line
be a line on the cubic surface, then the cone is a quadricone having for its reciprocal a

conic; the reciprocal surface is thus given as the locus of a variable conic, the plane of
MDCCCLXIX. 2 L
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which always passes through a fixed line; there are thus on the reciprocal surface series
of such conics. It would be very instructive and interesting to carry out the investigation
in detail.

32. The equation of the reciprocal surface is found by equating to zero the discrimi-
nant of a ternary or a binary function®, viz. this is a ternary cubic, or a binary quartic,
cubic, or quadric. The equation as given in the form disct. =0, contains a factor
which for the adopted forms of equations is always a power or product of powers of
w, 2, «F known & priori, and which is thrown out without difficulty, the equation being
thereby reduced to the proper order. There is the singular advantage that the. process
puts in evidence the cuspidal curve of the resulting reciprocal surface, viz. for a ternary
cubic, the form obtained is §°*—T?=0, and for a binary quartic it is the equivalent form
I3—27J2=0; but for the factor thrown out as just mentioned, we should have simply
(S=0, T=0), or, as the case may be, (I=0, J=0) for equations of the cuspidal curve;
the existence of the factor occasions however a modification, viz. the intersection of the
two surfaces is not an indecomposable curve, and the cuspidal curve isin most cases, not
the complete intersection, but a partial intersection of the two surfaces. Inseveral cases
P,Q R
PI’ Ql, RI
or with further speciality. Similarly when the equation of the reciprocal surface is
obtained by means of a binary cubic; if the coefficients hereof (functions of course of
the coordinates , y, 2, w) be A, B, C, D, then the surface is

(AD—BC)*—4(AC—B)(BD—C?) =0,
A, B, C
B,C, D

it thus happens that the cuspidal curve is obtained as a curve =0, without

having the cuspidal curve

l:O, subject however to modification in the case

of a thrown out factor.

Explanation as to the Sections of the Memoir. Article Nos. 83 & 84.

33. As regards the following Sections I to XXIII, it is to be observed that for the
general surface I=12, I do not attempt to form the equation of the reciprocal surface,
and in some of the other cases, II=12—C, &c., the equation of the reciprocal surface is
either not obtained in a completely developed form, or it is too complicated to allow of its
being dealt with, for instance so as to put in evidence the nodal curve of the surface.,
Portions of the theory given in the latter sections are consequently omitted in the earlier
ones, and in particular in the Section I there is given only the diagram of the 27 lines and
the 45 planes (with however developments as to notation and otherwise which have no
place in the subsequent sections), and with the analytical expressions for the several lines

* In some easy cases, for instance XVI=12-—4C,, the equation of the reciprocal surface is obtained other-
wise by a direct elimination..

+ The factor is in general a power or product of powers of the linear functions which, equated to zero, give
the equations of the planes reciprocal to the several nodes of the surface.
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and planes, although from the want of the equation of the reciprocal surface these ana-
Iytical expressions have no present application. And so in some of the next following
sections, no application is made of the analytical expressions of the lines and planes.

34. I call to mind that if a line be given as the intersection of the two planes

AX+4-BY+CZ+DW=0, AX4BY+CZ+4+D'W=0,
then the six coordinates of the line are
| a, b, o £ g I
=AD'—A'D, BD'-B'D, CD'—CD, BC'—B'C, CA'—CA, AB'—A'B,
and that in terms of its six coordinates the line is given as the common intersection of
the four planes
( . hy, —g, a YX,Y,7Z, W)=0,
—h, . I b '
9 —f . ¢

]—a, -0, —c,

and that (reciprocating as usual in regard to X®4-Y*+-7°++W?*=0) the coordinates of
the reciprocal line are (f, ¢, %, «, b, ¢); that is, this is the common intersection of the
four planes

( . e, —b, f Xa,y,2 w)=0.
—c .o g
b, —a, . h

—f =g, —h,

It is in some cases more convenient to consider a line as determined as the intersection
of two planes rather than by means of its six coordinates; thus, for instance, to speak of
the line X==0, Y=0 rather than of the line (0, 0, 0, 1, 0, 0); and in some of the sec-
tions I have preferred not to give the expressions of the six coordinates of the several
lines.

§ I=12, Equation (X, Y, Z, W)*=0. Article Nos. 35 to 46.

85. There is in the system of the 27 lines and the 45 planes a complicated and many-
sided symmetry which precludes the existence of any unique notation: the notation can
only be obtained by starting from some arrangement which is not unique, but one of a
system of several like arrangements. The notation employed in my original paper
«On the Simple Tangent Planes of Surfaces of the Third Order,” Camb. and Dub. Math.
Journ. vol. iv. 1849, pp. 118-132, and which is shown in the right hand and lowefmargins
of the diagram, starts from such an arrangement; but it is so complicated that it can
hardly be considered as at all putting in evidence the relations of the lines and planes;
that of Dr. HART (SaLMoN ¢ On the Triple Tangent Planes of a Surface of the Third Order,”
same volume, pp. 252-260), depending on an arrangement of the 27 lines according to
a cube of 3 each way, is a singularly elegant one, and will be presently reproduced.

2L2



244 PROFESSOR CAYLEY ON CUBIC SURFACES.

36. But the most convenient one is ScHLAFLI'S, starting from a double-sixer; viz. we
can (and that in 86 different ways) select out of the 27 lines two systems each of six lines,
such thatno two lines of the same system intersect, but that each line of the one system
intersects all but the corresponding line of the other system; or, say, if the lines are

1,2,3,4,5,6

1, 2,8, 4,8, 6,
then these have the thirty intersections

1, 2,8, 4,5, 6

. . 3 . 3

3 . . 3 3

3 . . . 3

St > W o
L]
.

6 3 . . . .

Any two lines such as 1, 2' lie in a plane which may be called 12'; similarly the lines
1', 2 lie in a plane which may be called 1'2; these two planes meet in a line 12; and
any three lines such as 12, 34, 56 meet in pairs, lying in a plane 12.384.56. We have
thus the entire system of the 27 lines and 45 planes, as in effect completely explained
by what has been stated, but which is exhibited in full in the diagram.

87. The diagram of the lines and planes is
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Planes.

12,
12,
12
13
13
13.
14
14
14
15
15.
15
16.
16
16.

34

35.
.36.
.24,
.25.

26

.23.
.25
.26.
.23.
24.
.26.

23

.24,

25

12/
13
14
15’
16
2v
23/
24/
25’
26/
31
32/
34/
35/
367
41
42/
43’
45
46
51
52
58
54/
56
61’
62
63’
64
65’
.56
46
45
56
46
.45
56
.36
35
46
36
34
.45
35
.34

97
74

9¢
45
145
98
66
73
€8

Lines.

i
14
é

9
/g
4
£
g

- S Ov ok 0 D -

L8 9¢

1%

| Ra94

L=

45x1=45

.’pf"hlcbmsxs n e 8

jay

R e a0 S s

T f"’:l‘d'ﬁgg

o oRidlig ~

~

I"—P'»Pl Blol == 5 MM 8

LEl=l g

—,
I
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38. It has been mentioned that the number of double-sixérs was =36, these are as
follows :—

1, 2, 8, 4, 5, 6 Assumed primitive . . 1
1, 2. 8, 4, &, ¢

1, 1, 23, 24, 25, 26 Like arrangements ﬁ. . 16
2, 2,13, 14, 15, 16 '

1, 2, 8, 56, 46, 45 Like arrangements . . 20
23, 13, 12, 4, b5, 6 36

where, if we take any column }. of two lines, we have the complete number 216 of pairs
of non-intersecting lines (each line meets 10 lines, there are therefore 27—1-10, =16,
which it does not meet, and the number of non-intersecting pairs is thus 427 .16=216).

89. We can out of the 45 planes select, and that in 120 ways, a trihedral-pair, that
is, two triads of planes, such that the planes of the one triad, intersecting those of the
other triad, give 9 of the 27 lines. Analytically if X=0,Y=0, Z=0 and U=0, V=0,
W=0 are the equations of the six planes, then the equation of the cubic surface is
XYZ+kEUVW=0. See as to this post, No. 44.

The trihedral plane pairs are—

12, 238, 381/

12, 213, 381 No. is =20
19, 34, 14.23.56

28, 4'1, 12.34.56 =90

14.25.86, 85.16.24, 26.34.15
14.85.26, 25.16.84, 36.24.15 =10
120

The construction of the last set is most easily effected by the diagram
1238 x 456
312 56 4
2\ 31 645

'
I

14 25 36
35 16 24
26 34 15

Tt is immaterial how the two component triads 123 and 456 are arranged, we obtain
always the same trihedral pair.
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40. Dr. Harr arranges the 27 lines, cubically, thus:
A B C | ab ¢ o B %
A, B, C, @, b, ¢, ey Ps Va
A, B, C, @; b, c, s Bs s
where letters of the same alphabet denote lines in the same plane, if only the letters are
the same or the suffixes the same; thus A,, A,, A, lie in a plane A A,A;; A, B, C,

lie in a plane A,B,C,. Letters of different alphabets denote lines which meet accord-
ing to the Table

@ by ¢ | b, ¢y a5 | €, @, b,
A, B, G
o, ﬁfz Vs Bx Yo 3| Y1 &2 s

Cs Uy 61 /2% bs ¢, 62 Cy )
A, B, C,
Bayr | ¥ @ s | B 72

b, ¢, a, | ¢; a, b, | a3 b, ¢,
A, B, C,
Yo 0 PBi| @ By | Bo s o

where the letter in the centre of the square denotes a line lying in the same plane with
the lines denoted by the letters of each vertical pair in the same square. Thus A, lies
' in the planes Aa.x, Ab,03,, Ay, (and in the before-mentioned two planes A,AA,,
A,B,C). _
41. I find that one way in which this may be identified with the double-sixer nota-
tion is to represent the above arrangement by

1, 2,12 3, 4, 34 13, 24, 56

14, 25, 36 2, 6,26 1, 16, 6

4, 5, 45 23, 46, 15 3, 35, &
and then the identification may apparently be effected in (720 x 36=) 25920 ways, viz.
we may first in any way permute the 1, 2, %, 4, §, &, by this means not altering the
double-sixer 1,2 %, % £ &, and then upon the arrangements so obtained make any of the

substitutions which permute énfer se the 36 double-sixers.

42. The equations of the 45 planes are obtained in my paper last referred to, viz.
taking the equation of the surface to be

WL L, 1L, L mud s aldoys It 4w met s XX, Y, 2, Wy HEXZY =0,
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where
—P=F 1 g—lmn— L
: k—2(p—a)’ “—lm%-l-lmn’ p=1lmn lmn’
then the equations of the planes are:—

W=0, [12/=w]

IX Y +nZ+W [1+—1,;(z—%) ( —%) (n-i)] =0,  [28'=0]

it iew [1-%(1—-}) (m—%) (n—%)] —0, [31'=7]

X =0, 12.54. 56=a

Y =0, %42' =y%

7 =0, | (14 —2]

X y(m—z) (n—7) W=0, [21'=¢£]

Y+%(n——%) (l—-%)W:O, [32'=1]

Z3(1=7) (m—3,) W=0, [18=¢]

IX 4+~ 42 4 W=, [41'=f]

X Y2 W=, [34=g]

X 7 W=0, [13.24.56=h]

X Yzt W=0, [24=F|

IX 4 =g 7k W0, [14.25.36=g]

IX Y 2+ W=0, [48'=T]

X = Iy, | [12.35. 46=x]

Y+Mﬁ)¢i2—”l =0, [52'=y]

7+ M= iy, [15'=12]
Jomned |

X W=, [12.36.45=x]

1 2
—(p—a)+

———C————— = ’-_—_-_—
Y -3 0, [62=y]
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1( ) 2
ﬁp—-a Im

— e W =0,
2+ p+B

X+—Y+nZ+W__0

Tm(p —a)

X————Y+ 7+W 0,

(p «)
—X+mY

2m

gl W=0,

n(p )X—l—mY+ Z+W 0,

1 2n ,
7X—R;;'TY+7ZZ—I—W—O,
IX 42— m(p ol W=0,

S
_MPZO X 4 fnlh W=,

x-12=9y 1z weo,

%X-.LmY—-ﬂ(];-;i) Z+W=0,

MPZE) X L Y L W=,
Lx M2y 7 W=,

7 ( “) .
X1 Y- 7 W=0),

-————+nY—|—mZ+(mn(p—ac) 2U(1—m’ ——%2))]]_”3
nX—F—;‘—l—ZZ—l-(nl( p—a)—2m(1—n*—1%) m:O,

X A 1Y — 2 (I p—
(%(p—w)—%(l—%—%))l_%o’
—X"I‘ +ZZ+(1(1) @)— m(l 1>> ﬁ—o

X+l %_Zu (lm(_p-—-u) (1 7 mg>>p 5= =0,

MDCCCLXIX. 2 M

—o)—2n(l—0"—m?)) p+l3_0

249

(16/'=x]
[56/'=1]
[45'=m]
[64=n]
[15.26.84=I]
[16.24.85=m]
[14.95.36=0]
[65'=L]
[46'=m,]
[64'=n,]
[16.25.34:1_1]
[15.24.36=m,]

[14.26.85=n,]

(51'=p]
[35'=q]
[18.25.46=1]
[26':5]
[16.23.45=q]

[86'=r]
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1 1 2 W
—ﬁ"ﬁ)(zf—“)—n%) =0 [25'=p]
X p—a
) SR ( (1—=5) (p—)— nl>p+ﬁ__o [15.23.46 =q,]
Y o 1
._+ - -7’ Zi—Imn ( (1 W)(p—oc)—%>p——--=0, [58'=r,]
LI XA Y i (L= =) p—t)—2mn), =0, [61'=p]]
nX—LZEY 41— (12— ) (p—r)— 2nl) —__o [36'=q,]
mX— 1Y 222 -M(n(1_zz_me)(p_w)—%n)m:o, [18.26.45=r,]
43. The coordinates of the 27 lines are then found to be as follows:—
(a) () ()
1 0 0
0 1 0
0 0 1

-t
I
=l
TN
=
]<
Sl
—
TN

I

L
N

o~
Lo
| -
N—
S

3

=

|

S~
\/
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(f) (9) (%)
0 0 0 (12 =a,)
0 0 0 ( 2=b)
0 0 0 (1=c)
0 —n m ( 2;a2)
n 0 —1 (23 =b,)
—m ! 0 ( 8'=¢,)
1 1 !
0 - m | ( I'=a,)
1 1 -
1 1
—1 ! 0 (13 =c,)
1 84 —
1 .
n 0 —7 (24 =3,)
: ! 0 14 =
~m (14 =c,) '

22

251
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(2) (%) (¢)

1 0 0

0 1 0

0 0 1
) )| e
—m(p— )<1+W~) 2“(77@—%) 2(“%‘%)
215 —lp—a)(1+i50) | 2(n—)
2n(1-7) =) (Ltipny) | 2(1ty)
()| e )
—a(p=a)(1tipry) | 2(taa) 2 (=)
2 (-1) T(mnma) | 2 aa)
)| Y (e
B <1+ﬁn‘(}2;n:;)) —2<1+ ﬁ“}) 7%<"_}z>
2 (1) ~2(1 =) "7 (atr=a)
fif(u—;é%)) %(W%) —2(Liy J)
—2(1-!’7,%(72;‘%:.?)) (o) 7(n—3)
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(f) (9) (%)
0 —n - (56 =a,)
% 0 1 (4 :bs)
—m -][ 0 ( 4=c,)
0 ~(p48) | -IEED | (35=a)
—mi((f,ig 0 —(p+B) (25 =)
—(p+B) ig:ﬁ)) 0 (15 =q,)
0 ?((Iljjg) p+B (46 =a,)
p+B 0 %I;,——E% ( 5=b;)
S p+B 0 (8=c,)
0 SHB N —(p-p) | (36=a)
~(2=B) 0 ~2e=f) | (26=1)
_.21‘%1:’._'%32 —(p—pB) 0 (16 =c,)
, —
0 p—B Bl (45 =a,)
_.~._2";§g;ﬁ> 0 p—B ( 6=0)
r—B =B 0 (6'=q)

253
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44, We have X=0, Y=0, Z=0, W=0 for the equations of the planes
(12.34.66=x), (42'=y), (14=2), (12'=w);
and representing by f:lX-}-n%Y-{—%Z +W=0 the equation of any other plane (41'=f),
the equation of the cubic surface may be presented in the several forms:
0=U=Wff JkEYZ
=Wgg +kiZX

=Whh +kZXY
=Wao +k&l
=WI, kyzx
=Wmm, +kzxy
=Wnn, -kxyz
=W11 +kyzx
=Wmm +kzxy
:‘Wn,ﬁ +kxyz
=Wpp, +kéyz
=Wqq, -+knzx
=Wrr, +k{xy
=Wpp, +kéyz
—Wag, -+l
=W, +kxy,

which are the 16 forms containing W, out of the complete system of 120 trihedral-pair
forms.
- 45, The 27 lines are each of them facultative; we have therefore §'=¢=27; #=45;
moreover each of the lines is a double tangent of the spinode curve, and therefore
B(=2¢)=54.

46. The equation of the reciprocal surface is not here investigated ; its form is

SP=T2=0,

where S=(xY=, 7, z, w)', T=(xXY=, 9, 2, w)’; wherefore #'=12.

The nodal curve is composed of the lines which are the reciprocals of the original 27
lines (8'=27, #=45 ut supra). It may be remarked that the reciprocal of a double-
sixer is a double-sixer. Hence the 27 lines of the reciprocal surface may be (and that
in 86 different ways) represented by
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1,2,3,4,5,6
1, 2, 8, 4,5, 6
12,13, .... 56,

where 12 is now the line joining the points 12' and 1'2; and so for the other lines.
The lines 12, 34, 56 meet in a point 12.34.56; the 30 points 12/, 1'2... 56', 5'6, and
the fifteen points 12.34.56 make up the 45 points #. |

The above equation, 8°—T*=0, shows that the cuspidal curve is a complete intersec-
tion 6 X 4; ¢ =24.

Section II=12—C,.
Equation W(a, b, ¢, f, ¢, BYXX, Y, Z+2kXYZ=0. Article Nos. 47 to 59.

47. It may be remarked that the system of lines and planes is at once deduced from
that belonging to 1=12, by supposing that in the double-sixer the corresponding lines
1 and T, &c. severally coincide; the line 12, instead of being given as the intersection
of the planes 12/, 12, is given as the third line in the plane 12, which in fact represents
the coincident planes 12’ and 1'2. ’
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48. The diagram is

Lines.
EEEZTELERERFIGEITR o ov s o
II=12-C, ve — Py
. 2 | M ¥
It [
Il I
N o i<
12 : * o
13 : . .
14 : : ‘
15 : L .
16 : ° *
23 . . .
L]
24 : . o
25 - . . Biradial planes, through
P - o each pair of rays.
5 p—t »
.5 2 15x2=30 : . .
=]
34 : . L]
35 ° L .
36 : . .
45 “ . [
46 - . .
56 : T
12.34.56 y . . o
12.35.46 . .
12.36.45 o . o
13.24.56 . . o
13.25.46 . . o
13.26.45 . . o
14.23.56 . . . ..
T Planes each containing
14.25.36 15x1=15 . . . three mere lines.
14.26.35 o . .
15.23.46 . . .
15.24.36 . . .
15.26.34 o . o
16.23.45 . .« .
16.24.385 . o .
16.25.34 |30 45 . . .
- o
53 =87
& g6
U‘§ 523
L
?Q‘:o 8 E:
E8 Egl

49. Putting the equation of the surface in the form
W(1, L1 4L mal atlyX, v, Y)2+°‘£pl§xyz=o,




o
(@14
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where for shortness

o= mn—1I,

B= nl—m,

y= Im—n,

d=Imn—1,

p=lmn,
then taking X=0 as the equation of the plane [12], Y=0 as that of the plane [34],
Z=0 as that of the plane [56], the equations of the 30 distinct planes are found to be

X =0, [12]

Y =0, [34]

Z=0, [56]

m X4 Y+Z=0, [23]

m~ X+ Y-+7Z=0, [24]

m X+I'Y+Z=0, [13]

m~ ' X+1'Y +7Z=0, [14]

X+4+n Y+m Z=0, [45]

X+4n"'Y+m Z=0, [46]

X+n Y4+m™Z=0, [35]

X+n""Y+m~Z=0, [36]

n X4+Y+1 Z=0, [16]

n ' X4+Y+1 Z=0, {15]

n X+Y+I17Z=0, [26]

n ' X+Y+1Z=0, [25]
W=0, [12.34.56]
X4ByW=0, [12.36.45]
X—ad W=0, {12.385. 46]
Y +ayW=0, [16.25. 34]
Y —-33W=0, {15.26. 34]
7 +e«BW=0, [14.23.56]
7 —pd W=0, [13.24.56]
mnX 4 nlY 4 InZ—+efydW=0, [16.23.45]
pX+ Y+ mZ+ ByyW=0, [13.26.45)]
X4+ pY+ IZ+ yudW=0, [16.24.35]
mX+ Y+ pZ4+ oW=0, [15.23.246]
X+ imY + nZ— BypyW=0, [15.24.36]
ImX+  Y4mnZ— yudW=0, [18.25.46]
WX +mnY+  Z— a3W=0, [14.26.35]
X+ mY+ nZ— afyW=0, [14.25. 36]

MDCCCLXIX. 2N
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50. And the coordinates of the 21 distinct lines are

()| (B) (1l (9 () whence equations may be taken to be
I110]0] 0 |-=1 1 (1) X=0, Y4 1Z=0
0O fm| O 1 -1 (3) Y=0, Z4+mX=0
00| 2 |—1 0 (5) Z=0, X+ n¥=0
00| 0 |—1 1 (2) X=0, Y4+ I"'Z=0
0 |m™| 0| 1 0 |—1 (4) Y=0, Z +mX=0
0 |n|—1 1 0 (6) Z=0, X+ n'Y=0
1 a|m| 0 ﬁ—”;; _ﬁ% (45) X+ oY 4+mZ=0, X+pyW=0
l no
w1\ 0 | (16) Yo efaX=0, Y 4yeW=0
m| |1 ;lﬁ —% 0 | (28) ZAmX+ IN=0, Z +apW=0
1 1
Ll g lm| 0 | =% | — | (46) X+ 2" V4mZ=0, X—adW=0
1 1 ’ - -
n | 17| 0 —,3% (26) Y4 I7Z4nX=0, Y —BW=0
1 1| 1 | )
m | DL s g | O (24) 7 4+m~ X+ IY=0, Z —dW=0
1 1 ! o —1
Lln || 0 |—Z5 = (85) X4+nY4m 7 =0, X—adW=0
1 [ 1 -1
RN RN 0 | —g| (15) YHIZ4u ' X=0, Y—gW=0
1 1 -1
m| 7|1 I gg 0 (18) Z +mX41" Y=0, Z —dW=0
1 1 1 1 - —1r7
1 1 1 1 1 -1
7 1 7 —Z'(;; 0 W (25) Y4 77 4 ' X =0, Y-l—'yo&W:O
1 1 1 1 -1 -1
w7 Y ] B mage O | (8 ZAmTXA4 Y =0, Z4efW=0
110]0] 0 0 0 (12) X=0, W=0
o|l1]0] 0 | 0 0 (34) Y=0, W=0
01| 0 | o0 0 | (56) Z=0, W=0
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51. The six nodal rays are not, the fifteen mere lines are facultative. Hence
0=¢=156; #=15,
52. Resuming the equation W(a, b, ¢, f; ¢, RYX, Y, Z)*+2kXYZ=0, the equation
of the Hessian surface is found to be
KW¥a, b, ¢, f, 9, WYX, Y, Z)
+2EW {(a, b, ¢, f, g, RYX, Y, Z)(FX+GY +HZ)—8KXYZ}
—P{@X A 0Y o L — 200V 12 — 20072 X2 —2abX2Y?
— AXYZ[(af +-gh)X+ (g1 )Y+ (el 77} =0,
where
(A, B, G, F, G, M=(be—f*, ca—g*, ab—1?, gh—af, hf—bg, fy—-ch),
K=abc—af*—bg*— ch*+2f gh.
The Hessian and the cubic intersect in an indecomposable curve, which is the spinode
curve; that is, spinode curve is a complete intersection 3 X4 ; o/=12.
The equations of the spinode curve may be written in the simplified form
W(a, b, ¢, f, g, BYX, Y, Z)*+2EXYZ=0,
—8KXYZW
+8EXYZ(af X+bgY +ch7))
—B{ X 0PY L — 260X 7 — 200 7P X —200X7Y?} =0 ;
and it appears héreby that the node C, is a sixfold point on the curve, the tangents of
the curve in fact coinciding with the six rays.
Fach of the 15 lines touches the spinode curve twice; in fact, for the line 12 we
have X=0, W=0; and substituting in the equations of the spinode curve, we have

(6Y?—¢Z?)=0; that is, we have the two points of contact X=0, W=0, Yo/0= +78/c.
Hence p'=30.

Reciprocal Surface.

53. The equation is found by equating to zero the discriminant of the ternary cubic
function

Xz +Yy+Zz)(a, b, ¢, f, g, BYX, Y, Z)—2kwXYZ,

viz. the discriminant contains the factor w* which is to be thrown out, thus reducing
the order to#'=10.

The ternary cubic, multiplying by 3 to avoid fractions, is

Xs, Y0, 7, 8YZ , 37°X , 8X°Y , 3YZ , 8ZX* , 3XY? , 6XYZ,
Sax, 3by, 3¢z, ba+2fy, cx+2g9z, ay+2hx, cy+2fz, azt2gx, ba-2hy, Jr+gy+he—kw.
Write as before (A, B, C, F, G, H) for the inverse coefficients (A=bec—f?, &c.),
and K=abe—af*—bg>— ch*+2fyh; and moreover

®=(A, B, C, F, G, HYx, g, 2)%,

P =Az-+Hy+Gg,

2N2
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Q=Haz+4By+¥z,
R=Gz—Fy+Cz,

t =fetgy+ra,
U=afyz+bgza+chxy,
V=2Kazyz— aPyz—0Qzx— cRay
=—aHy*s—0F2"2—cGa’y
—aGyz* —bHza®— cFay?
+(—abe—af *—bg*— ch*+4fgh)xyz,
W=(A, B, C, I, G, HYayz, bzz, cay)’,
L =kw*—2ktw— o,
M=kwU-+V,
N =2kabe zyzw+W:

54. Then the invariants of the ternary cubic are
S=12—12kwM,
T=1°—18kwLM —54%4*w’N ;
and the required equation of the reciprocal surface is
1 202N 2
ot (L —12kwM)° — (L° — 18kwLM — 545" w'N)*} =0,
viz. this is
0= I’°N = (FPw—2ktw— D) (2kabe xyzw+ W)
+L°M? +(Fw*—2ktw— D) (kwU4-V)
—18kwLMN  —18%kw(k*w* —2ktw — D)(kwU -+ V)(2kabe zyzw+ W)
—16kwM?® —16kw(kwU4-V)?
— 27w’ N* — 27w (2kabe xyzw—+ W )?,
which, arranged in powers of kw, is as follows; viz. we have
Coeff. (kw) = 2abc 2yz,
(kw)=  2abc ayz(—6t)+W
+ U7
(kwy= 2abc ayz(— 3P4 12¢)4+W(—06¢)

+U(—4¢)4-2UV
—36abe xyzU,
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2abc xyz(12¢tD — 8¢°)+ W (— 3P 412¢2)
+ U (—20+44)4+2UV(—4£)4-V?
—36abc xyzV —18UW +T2abc 2y2t U
—16T®
—108a%0°c* x™y%%*

2abe xyz(3P*—12¢2P) + W (12t D — 8¢°)
+U4t04-2UV(—2P 4 4¢*)+ V(—47)
—18VW 4 72abc ayztV + 86¢UW — 86abe 2yz®U
—4802V
—108abc xyz W,

2abe xyz(— 6tD*)+W(3D*—12¢2P)
+ U@ 42UV (44D)+ V3 (— 2D+ 412)
+36¢VW —386abe 2yz®V —18OPUW
—48UV?
—27TW?,

2abe xyz(— D°)+ W (—6¢P)?
+2UVD*4-V*(4¢D)
—180VW
—16V?,

W(—2°)
+ Vo2

but I have not carried the ultimate reduction further than in ScurLirLi, viz. I give only
the terms in (Aw), (kw)’, (kw)’, and (£w)".

5b. 1 present the result as follows; the coefficients deducible from those which pre-
cede, by mere cyclical permutations of the letters @, &, ¢ and f, ¢, &, are indicated by (,,).

0=(kw).2abc xyz

o2 e y? 2yz 2y ays®
6
. -l—(]t"ZU) * | a@fbe+1 ’ ’ abef —14 ’ ’
gcbh+ 4
s 2 22 2y 2y 2z ay's ayd 2y Py 2z
+(kw)d a’beg—6 | a’bch—6 |, ’ » y |ab’e — 6| » | a’bef —32 » 95
a’cfh +2 | ’bfg+2 abef? +42 abefgh+64
bleg® + 2 abfy® —24
be*h? + 2 acfh® —24
befgh —24 af’qh + 8

+(Fw).—K[(A, B, C, ¥, G, Y2, g, 2)*(cs*—2fyz+0")(az* — 2g20+ ba?)(ba® — 2hay 4 ay®).
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56. In explanation of the discussion of the reciprocal surface, it is convenient to remark
that we have

Node C,, X=0, Y=0, Z=0. Reciprocal plane is w=0.
Tangent cone is Conic of contact. is
(@, b, ¢, 1, g, RYX, Y, Z)*=0. (A, B,G, T, G, HYx, 9, 2)*=0, w=0.

Nodal rays are sections of cone by planes | Linesare tangents of this conic from points

X=0,Y=0, Z=0 respectively, viz. equa- | (y=0, 2=0), (=0, 2=0), (=0, y=0)

tions of the rays are respectively, viz. equations are
X=0, 0Y*+2f Y7+ ¢ 77=0, - w=0, ' —2fyz4-02’=0,
Y=0, ¢ 22429 ZX +aX>=0, - w=0, a®—2gza +c2*=0,
7 =0, aX*?+-2RXY -0Y>=0. w=0, 02°—2hay+ay’=0.

57. The equation shows that the section by the plane w=0 is made up of the conic
(A, B, €, F, G, HYu, y, 2)=0, twice, and of the six lines, tangent to this conic, viz.
the lines

w=0, oy*—2fyz +b2*=0,
w=0, ez’ —2gz0-+ca*=0,
w=0, b2’—2hay-+ay*=0,

each once; the lines in question (reciprocals of the nodal rays) are thus mere scrolar
lines on the reciprocal surface.

58. I do not attempt to put in evidence the nodal curve of the surface; by what
precedes it is made up of 15 lines, intersecting 3 together in 15 points; and if we denote
the six tangents of the conic just referred to be

1,2,3, 4,5, 6,
then the fifteen lines ave respectively lines passing through the intersections of each
pair of these tangents; viz. through the intersection of the tangents 1 and 2, we have a
line 12; and so in other cases; that is, the 15 lines are 12, 13 ....56. The lines 12
and 34 meet; and the lines 12, 34, 56 meet in a point; we have thus the 15 points
12.34.56, triple points of the nodal curve.
59. As regards the cuspidal curve, the equation of the surface may be written

(12— 12/whE) (4> STN) o (LM - 0N )
= (LM + TN — 18w T MN — 16 FwM°— 274w N?)=0,

and we thus have
4M?4 3LN =0,

LM + 9%%wN=0,

12 —12FkwM=0,
or, what is the same thing,
” L, 12M, —9N }.—_0

kw, 1L, M
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(equivalent to two equations) for the equations of the cuspidal curve. Attending to
the second and third equations, the cuspidal curve may be considered as the residual
intersection of the quartic and quintic surfaces I —12ZwM=0, LM+ 9%kwN =0, which
partially intersect in the conic w=0, L=0; or say it is a curve 4x5—2; ¢=18.

Section I1I=12—3B,.
Equation 2W(X+Y4-Z)(IX+mY +nZ)4-2kXY7Z=0. Article Nos. 60 to 72.

60. The system of lines and planes is at once deduced from that belonging to
1I=12—C,, by supposing the tangent cone to reduce itself to the pair of biplanes;
3 of the planes (a) of II=12—C, thus coming to coincide with the one biplane, and
three of them with the other biplane.

61. The diagram is

Lines.

LEREIRETRE o o m wiowm

II1=12-B, o= © >¢2

o e

I i

Sl © &
123 . . °

2x6=12 ° * ° | Biplanes.
456 : : ¢
14 o . .
15 L . .
16 ‘ . . .
! ' . .

@ . . Biradial planes cach con-
g N taining a ray 1, 2, or 3
AO25 | 9x3=27 | . . o . of the one biplane, and

! . a ray 4, 5, or 6 of the
N other biplane.
26 . .
34 . o e
35 : * » °
36 . N o
14.25.36 . . .
14.26.35 ° ° o
15.26.34 6x1=6 s = . Planes each containing
15.24.36 . . . three mere lines.
16.24.35 . .« o
16.25.34 |17 45 .. ..
ou§ ﬂdmg
RES 587
28 BP0
o B 205, 5w
&' G e
it PEE
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62. Taking X-++Y+Z=0 for the biplane that contains the rays 1, 2, 3, and
X +mY +nZ=0 for that which contains the rays 4, 5, 6, we may take X=0, Y=0,
7Z=0 for the equations of the planes [14], [25], [86] respectively; and then writing
for shortness

m—n, n—1U, —m=An, p, v,
and assuming, as we may do, £=aw», so that the equation of the surface is
W(X4Y +2)(IX+mY +nZ)+ (m—n)(n—0)(l—m)XY7Z=0,
the equations of the 17 distinct planes are

X=0. [14]

Y =0, [25]

Z =0, [36]

X+Y+Z=0, [123]
(X+mY +nZ=0, [456]
IX4+nY +nZ=0, [157
IX+nY+nZ=0, [16]
IX4mY+14=0, [25]
nX4+mY +nZ=0, [26]
mX-4+mY +nZ=0, [35]
(X41Y +nZ=0, [386]

W=0, [14.25.36]

W4+ X =0, [14.26.35]

WtmpY=0, [16.25. 34]

W 4-nZ=0, [15.24.36]

InX+mnY +nlZ4+W=0, [15.26.34]
WX FimY +mnZ—W=0, [16.24.35]

63. And the coordinates of the fifteen distinct lines are
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() (%) (e | (f)Y | (9 | (&) whence equations may be written
0 0 0 0 | -1 1 (1) X=0,Y+4+Z=0
0 0 0 1 —1 (2) Y=0,Z4+X=0
0 0 0 | -1 0 (3) Z=0,X4Y=0
0 0 0 —n m (4) X=0, mY4nZ=0
0 0 0 7 0 —1 (5 Y=0, 2Z41X=0
0 0 0 |—m l 0 ( 6) Z=0,XmY=0
1 0 0 0 0 | 0 (14) X=0, W=0
0 1 0 0 0 0 (26) Y=0, W=0
0 0 1 0 0 0 (36) Z =0, W=0
A n n wy | —nl 0 (15) | X4+nY4+nZ=0, W4+mw Z=0
l m m |—mw| 0 g | (16) I X4+mY4+mZ=0, W+mpY=0
m l 0 o | —lmp| (26) 1 X4mY41Z=0, W+ X=0
m n mny | —n® 0 (24) 2 X4mY+nZ=0, W+ Z=0
m m n |—mnw - 0 m'w |- (34) mX4+mY+4nZ=0, W+muY=0
l l ) 0 nlh | —=0Pn | (35) IX4IYH4nZ=0, W4+ X=0
64. The rays are not, the mere lines are, facultative; hence ¥ =¢'=9:¢=6.

65. The equation of the Hessian surface is

—W(X+Y+Z)(IX4+mY +n)(wX 4 Y +auZ)
— k(X - m* Y+ 07 — 2mn Y22 — 2nl27X > — 2imX>Y?)
F+EXYZ{(P+ 3lm~+3ln+mn) X4 (m*+ 3mn+ 3ml+nl)Y + (n* 4 3nl+ 3nm--ln)Z} =0.

The Hessian and cubic surfaces intersect in an indecomposable curve, which is the
spinode curve; that is, spinode curve is a complete intersection 8 x 4; o'=12.
The equations may be written in the simplified form

W(XAYHZ)(IX+mY +nZ)4EXYZ=0,
PXAm2Y 0t = 2mn Y 222 — 201 77X 2 — 2lm XY ?
—4AXYZ{I(m~+n)X+m(n+4-0)Y +n(l+m)z4} =0.

‘We may also obtain the equation

B(XA+Y +Z)(IX +mY +nZ)(IX +mY*FnZt—m F Y L—nF 1ZX — IFmXY)
+A Y24 P X4 XY — 2X Y Z (X 4 Y +apZ) =0,
MDCCCLXIX.

20
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which shows that there is at B, an eightfold point, the tangents being given by
X+Y 4 Z)(IX+mY +nZ)=0,
(7\27 P’23 V29 — by — VA, '—;\.UJIYZ, ZX, XY)2=O.

Each of the facultative lines is a double tangent of the spinode curve; whence /=18,

Reciprocal Surface.
66. The equation may be deduced from that for II=12—C,, viz. writing

(@, b, ¢, f5 g, WYX, Y, XY=2X+Y+Z)(IX+mY +nZ),
that is
(@, b, ¢, f, g, B)=(21, 2m, 20, m—+4-n, n+1, I+m),

(A, B, C, F, G, H)=—(2% % »*, w», vA, Ap); K=0.

we have

Writing also ,
A, hy v=m—n, n—1, {—m as before,

Ay +vz=o,

Imn zyz=H,
{m+n)yz+m(nDex+n(l+m)zy=vo,
Nyzt+mpz  x+ Wy =1y,
(m4n)e+  (n+0y-+({+m) z2=t,

we have ,
U=20, V=200, W==—4?,

and then
L=~Fw*—2ktw +0*, M=2(kwv+s}), N=4(dmnkzyzw—4?*);

so that the eqﬁation 18
0=I'N = 4w — 2kwt 40P (4kwi—3?)
AL 4 AR —2Dwt 4o (kwo +oeb)?

—18kwLMN  —144kw(F*w® — 2kwt-+o*)(kwo o) (Fwld—47?)

~16FwM®  —128Fw(kwo-+o)?

— 27PN — 432w (hwi—47) ; ;
or reducing the first two terms so as to throw out from the whole equation the factor
kw, the equation is

4L {0L 4 (* — P )ow + 2Y(4) -+ vo)}
—18LMN —16M®—27kwN>=0),
or, what is the same thing, it is
(B2 — 20wt + 02 { Bow*0 + oty ( — 240 02— ) - 620+ 250 - 2807}
— 36(F*w* — 2kwt -+ o*)(kwo + od))(4kwd —4?)
— 32(kwv4-ob)?
~— 108kw(4kwd—*)*=0.
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67. This is
(kw)t. 0
F(kw) . —4*—6th+v*
+(kw)t. o*.30+oy. 20492 6¢+1260—4f0> — 14400
+(Fw)® . — 20"V 4-6*(20° — 1020) + oY — 8tv—1440) +4*(— 12¢+860)
— 8830+ 4t°v* 4 288¢vd— 320° — 1728¢°
+(Fw). o*3040%Y.dvo™Y?. 1264002, 37
0312020 — 4t* — 14400) o)+ 812 + 2880 — 96%)+-42(8— 721+ 8640)
 (Fw) . — 00— 6F0-+v*) o™ — St — 1440)
" oY — 88— 900)Fol*. — T2 4. —108
+(kw)’s*(0, 20, 2t, 4o, 4)*=0,
Which, reducing the last term, is
(kw)%mmyz
— 4o’ hp(y — 2)(z—x)(@—y ) (ny —mz)(lz — nx)(ma — ly) =0.

68. I verify the last term in the particular case z=0 asfollows: the coefficient of ¢° is
(0, 2n(l+m)ay, 2m+nw-+2n--ly, A a4+ py, way),

which is
=2n%y*{({+m)(Ae+uy)?,

+(maz-fa-rly) -t yy)
+ 20y}
= 200%™y { {+mh +m-~-nv)ha?
+[20+mh -+ v(m g n-F i+ 2m0) Jry
+(Fmp+n+b)uyy,
which, substituting for A, w, v their values m—n, n—1{, I—m, is
=202 . — 2np(—y)(ma—1y) ;
or for =0 the coefficient of ¢° is
= —dapm*a®y(x—y)(ma—ly),
agreeing with the general value

— 4y —2)(e—2) (@ —y ) (ny —mz)(lze—nz)(le —my).
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69. In the discussion of the equation it is convenient to write down the relations of
the two surfaces, thus:

Cubic surface. Reciprocal surface.
B., X=0, Y=0, Z=0 Plane w=0,
Biplanes X+ Y-+ Z=0 Points in w=0, viz.
IX4+mY +nZ=0, s=y=zand z:y:z=l:m:n,
intersecting in edge. in line (m—mn)x 4 (n—10)y+(l—m)z=0,
' that is, Az +py+rs=0, or 6=0.
Rays in first biplane, Lines in plane w=0, and through first
X=0, Y+Z=0; Y=0, Z4+X=0, point, viz.
Z=0,X+Y=0; y—2=0, z—2=0, 2—y=0;
rays in second biplane, lines through second point, viz.
X=0, mY+nZ=0; Y=0, nZ+IX=0, ny—mz=0, nz—Ile=0, lx—my=0.
Z=0, IX+mY=0. ‘

70. The equation puts in evidence the section by the plane w=0, viz. this is the line
5=0 (reciprocal of the edge) three times, and the six lines (reciprocals of the rays) each
once. Observe that the edge is 70¢ a line on the cubic; but its reciprocal is a line, and
that an oscular line on the reciprocal surface; the six lines (reciprocals of the rays) are
mere scrolar lines on the reciprocal surface; they pass, three of them, through the point
x=y=2, and the other three through the point 2:y:z={:m:n; that is, they are six
tangents of the point-pair (reciprocal of the pair of biplanes) formed by these two points.

71. I do not attempt to put in evidence the nodal curve on the surface; by what
precedes it consists of 9 lines, reciprocals of the mere lines. If we denote by 1, 2, 3 and
4, 5, 6 the lines which pass through the points =0, y=0, z=0 and through the point
x:y: z=l:m:n respectively, then these intersect in the nine points 14, 15, 16, 24,
25, 26, 84, 35, 86; and through each of these there passes a nodal line which may be
represented by the same symbol ; that is, we have the nodal lines 14,....36. Two
lines such as 14, 25 meet ; and three lines such as 14, 25, 36 meet in a point; we have
thus the six points 14 . 25 . 86 &c. triple points on the nodal curve; as before, =9, #'=6.

72. The cuspidal curve is given by the equations

L BPwr—2kwt4-0?,  24(kwotod),  —36(4lmnk ayzw—3*  [=0.
; Iw . BPw—2kwite?,  2(kwotod) 1
Writing down the two equations,

(FPw*—2kwt + 6*)* — 24kw(kwv+ o) =0,

(Fw?*—2kwt4-6°)(kwo + o)+ 18w(imnk ayzw—4*) =0,

these are respectively of the orders 4 and 5; but they intersect in the line w=0, ¢=0
taken four times, or say, the cuspidal curve is a partial intersection 4-5—4; ¢/=16.
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Section IV=12—2C,.
Equation WXZ+Y*(yZ+3W)+(a, b, ¢, dY X, Y)’=0. Article Nos. 73 to 84.
78. The diagram of the lines is

CO DD DY et ted e
SRR RBE Lines
= by o
B o e AR R AW~ o i
IV=12-2C,. = o o — —
X X X X
— (&) — =
! Il Il Il
. —
g =S > — ~
[0] | 1x2= 2 . e o [Planc touching along
- axis.
11, . . .
99/ ¢ * . Planes through axis,
. . .. ©
- each containing a ray
. .
23/ 4x4=16 . . . of the one node and
3 : : a ray of the other
44’ . . . node.
. .
12 . o« .
.
13 : . . .
.
14 . . .
.
w 23 ° «
Q .
=]
= 24 ° ° °
~ . 1 1
a4 DBiradial planes, each
.« s
° containing two rays
12%2=24 ° of the one node or
e - two rays of the other
. . .
node.
. ode
18 . . .
.
1’4, . Ll .
.
2/3’ o L .
.
24 o . .
.
3’4/ . L] .
.
12.34 ° : . . Pl b .
13.42 | 3x1= 38 . . . ?Ines eacl c(iptammg
50 TS hree mere lines.
14.23 20 45 o . . .
= = b
oHon D mr*»-? =5 i
S258253 < 27 ZESl 55
o =®Ee a o vl e 4| &
= 5 = & L o o =
SRR o Beghemr ol g 2 2B
52282 33w e IS
ors 2. & 3§ N T B =
mED B o TR = 2]
8223, R 5 =
53®g Qer” 2 o
= Q =5 e @ = 5
o o Mm% g RS o 5
e e ) S o =
& o T = =
oo =oe B =S =
3 57e e P @B 3




270 PROFESSOR CAYLEY ON CUBIC SURFACES.

74. Writing X(a, b, ¢, dYX, Y)— Y= — 0 (X =Y)([X=Y)(X=Y)(fX~-Y),
the 20 planes are

X =0, [ 0]

X—£Y=0, [11']

X—£Y=0, [22']

X—£Y=0, [88']

X —£,Y=0, [447]
HX—(f4+£)Y} —££7 =0, [12]
HX —(f+1£,)Y} —f,£7 =0, [13]
X —(f,+£)Y} —££7 =0, [14]
MX—(f+1£)Y} —£67 =0, [23]
X —(f+£)Y}—££7 =0, [24]
DX — (1)} —££7 =0, [34]
X —(f+£)Y) —£EW=0, [127]
P K — (£, +£) Y} —££W =0, [187]
P X — ()Y} —££W =0, [14]
HAX —(EA£)Y ) —££W=0, [2'8]
X —(EA-£)Y } — £, W =0, [2'4]
P (X (£, £)Y ) —££,W=0, [3'4]

o <§F+§)X+dg+yz+m=0, [12.84]

_“9,3(
_75(

75. And the 12 lines are

g )Xy HZ AW =0, [13.24]

"“5] et "'_,.\[ el

e )Xy ZHOW=0,  [14.23]

(@) (%) (e | (f) | (9 (h) | whence equations may be written
0 0 | 0 0 0 1 | (0) X=0,Y=0

> 0 0 0 |—y d (5)  X=0, dY+yZ++3W=

0 0 0 2 £, |=d | (1) X=£Y=0,3Y+£Z=0
0 0 0 f2 £, |—3 (2) " "

0 0 0 f2 £ | = 3 ., .

0 0 0 £2 £, | —d (4) . ”
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(@) ) (¢) (f) (9) | (&) |

£ — 0 0 0 [ v | (1) X—£Y=0, 9yY4+£{W=0
f, -1 0 0 0 y (2)) ) : )

O e I 0 (3) . .

f, —f; 0 0 0 a (4:’) i .
b} 1 1 v 1 1 v 1/1 1 L /11 .

— [ 3(5t7) | 1| —(5+n) | -7 | mte) () (2.3
5 101 11 gy | 1/1 1\ 1/1, 1 n

i B(E“LE) 1 "7<f;+};) —~if @(ﬁg) —,E—,%(f—-;rﬁ) (13.24) ,,
> 11 11 vl 111y 1101 ‘

~7T, B(E+E) 1 _Y(f;—}-f‘;) ~i f:g(rl.{_ﬁ) _'foZ(E*'?;) (14.213) ,,
4 1,1 1,1 yo | L1 1 111\ | o

T 3(5“@) ! _7(ﬁ+ﬁ> 1, E(EJ‘TQ) _f2f3<fl+f:) | (231- 1'4) 3
s 11 11 y | 171 1y 1/1 1 |

- | Met) | 1] (i) | o ﬁf;(ﬁ'*‘f;)—ﬁﬁ(ﬁﬂ;) [ (24130
2l y(Ly ] [ y | 11,1\ 1/1 1

= | i) | 1) () | k| ) mr) | e

*equations are

B{X_(fl +f2)Y} —££72=0, ¢{X~— (fa ‘I‘ﬁ)Y} —~f£f,W=0.
76. To verify the equations of the line 12. 8'4/, observe that the two equations give

1 1 1 1,1, 1
szfBW:Va{X(@JFE)“Y(ﬁ+@+@+ﬁ>}’
W =g (X—EFEY)(X—f,FLY):

the equation of the surface, multiplying by X and observing that —yd=aff,ff,
becomes

2 2 1 8 — .
XLW A+ XYy LW ) Y — e (X— £ Y ) (X — V) (X—£Y)(X—£Y) =0

and substituting the values just obtained, this is
XX —f, FEY) (X — £, +£,Y) + XK1 L, + L, — YELE H L], - ff, +£11)
+HHEELY —(X—fY)(X ~ LY)(X—LY)(X—1£,Y)=0,
which is in fact an identity.

77. The facultative lines are the transversal and the six mere lines; §'= --g =7; {=
78. The equation of the Hessian surface is found to be

(yZ -+ dW)XZW 4 Y (g Zi— SW P+ 3(cX + Y )XZW + 120X Y2 (X +0Y)
— (Y24 dW)(3aX3+95X2Y + 66X Y?)
—9X *{(ac— 63X+ (ad—be)XY + (bd— )Y} =0
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79. Combining with the foregoing the equation of the surface
XZW +Y?(yZ+0W)+(a, b, ¢, IYX, Y)=0,

it appears that these have along the line X=0, Y=0 the common tangent plane X=0,
or, whatis the same thing, that they meet in the line X=0, Y=0 (the axis) twice, and
in a residual curve of the tenth order, which is the spinode curve; the equations may be
presented in the somewhat more simple form
XZW +Y¥yZ+3W)+(a, b, ¢, Y X, Yy =0,

— 4N Y LW —4(yZ4-3W)(a, b, ¢, AY X, Y+ 120X Y (aX+0Y)

+X4(—=12a0490*)— 8d(4aX°Y 4+ 60X>Y*+4¢XY?4-dY*) =0,
which, however, still contain the line X=0, Y=0 twice. The spinode curve, as just
mentioned, is of the tenth order; that is, we have ¢/ =10. ‘

Each of the 6 mere lines is a double tangent to the spinode curve, but the trans-
versal is only a single tangent: to show this, observe that the equations of the trans-
versal are X=0, yZ-48W4dY=0; substituting in the equations of the curve the first
equation, that of the cubic surface is of course satisfied identically; for the second
equation, writing X =0, this becomes Y2{—4y0ZW —4dY(yZ+6W)—3d°Y*}=0; or
writing herein dY=—(yZ+3W), it becomes Y*(yZ—0W)*=0. The value Y’=0 gives
X=0, Y=0, yZ-+8W=0, viz. this is a point on the axis X=0, Y=0 not belonging to
the spinode curve; the value (yZ—oW)=0 gives a point of contact X=0,
yZ4dW +dY =0, yZ—3W=0; and the transversal is thus a single tangent. Ilence
the number of contacts is 2.6-+1, =13; that is, we have §'=13.

Reciprocal Surface.

80. The equation is found by equating to zero the discriminant of the binary quartic
{aX24-yXY — (02 +9w)Y?} +4Zw{X(a, b, ¢, dYX, Y)—y0Y*},
or say this is (¥} X, Y)*, where the coefficients are
6a? 424 azw,
Say +18&zw,
y*—2(0z+yw)r+12czw,
—3(0z+yw)y+ 6dzw,
6(0z—qw)®.
81. Forming the invariants, these are
FI=A+ 24Uzw+ 144p2"w®
—J=A+36 AUzw 4216 V*w® 4 864vz’w?,
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where
A=y 40z +yw)x,
U =2¢92° 4 2a(8z—yw)*+ 3by (32 +yw) + [ 4> — 29z +yw)x ] — dzy,
V=(—8ac+98*)(dz—yw)’
+(20 )y — 2o yw)a]
+(—4ad+6bc)y(sz+yw)
—2ed xy
+ &
+ 4y0(2¢a® — Bbay + ay?),
w=c’—bd,
vy =ad?— 2608-{— 2¢°,
and the equation is

550 {(A* 24U+ 144p207) — (A°+ 86 AUzw+ 216 Varw? + 8640} =0.

Or, expanding, this is
Au— AV 4+ AT?

+ dow( —A%+12AUp—9AUV 4-8U?)

4+ 362%* ( 4A°%*—4ATUv+16U%—3V?)
4+ 8642°w’( 4Up*—Vy)
+ 1728z w*( 4 —»)=0,

where observe that the value of
4P —v*, =4(bd— ) —(ad’— 3bcd+2¢°) is = — (@ d*+4ac®4-4b°d— 8b°c*—Gabed).
82. It is convenient to modify the form of the equation as follows; write
- U,=U+8aydew, V,=V +(—8ac+95*)ydew,
so that
A =P +40z4yw),
U, = — 29307+ 2a (32 -+ yw)* + 3by(32 -+ yw) + o 4 — 2(32 +yw)a] — dey,
V,=(—8ac+90*)(0z-f-yw)*
+ (22— 0d) y*—2(02 +yw)x]
+(—4ad+-6bc)y(dz +yw)
—2cdzy
-+ d*a?
+4o0(2ca® — Sbay +ay?),
p= c—0bd,
v = ad*—2bcd+2¢,
MDCCCLXIX. 2p
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A, U, V, being, it will be observed, functions of #, y, 2+yw. The transformed equa-
tion is : '
N (Nu— AV, +U3) 4+ Qzw=0,

where the term Q may be calculated without difficulty: the first term of this is

= {y+40z+yw)z}?. 40w +fy—13(de+ yw)) ety —£20z -+ yw)],
the developed expressions of 2(A%w— AV,+4-TU}) and of ¢*3* into the product of the linear
factors being in fact each

=a'. "B+ 2% . dydta®y? . —Boydtay®. Sbyd -yt . —ays

[ (—d>—6eyd) +a%y(Bed + 9byd) +ay*(— 3bd—4ayd) +3° . ad)(dz+yw)

+[2*(96*—6bd—2ay) +xy(3ad—9bc) -+ . 3ac](dz4-yw)*

+[2(6ac—90*) +y . 3ab)(dz+yw)®

+a®t. Oz +yw).
The form puts in evidence the section by the plane w=0, which is the reciprocal of the
node D, viz. this is a conic (the reciprocal of the tangent cone) twice, and four lines, the
reciprocals of the nodal rays, each once. And similarly for the section by the plane
z=0.

83. The nodal curve is made up of the lines which are the reciprocals of the six
mere lines and the transversal; viz. we have three pairs of lines and a seventh line,
the lines of each pair intersecting at a point of the seventh line, and these three points
being the triple points of the nodal curve; #=3 as before.

84. The equations of the cuspidal curve are at once reduced to the form

A2 +24Uzw +144p2w =0,

AU+ 18V —12pA)zw 4+ T2v2"w*=0,
which are two quartic surfaces having in common the conics z==0, A=0, and w=0,
A=0; or we may say that the cuspidal curve is a curve 4.4—2—2; that is ¢'=12,
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Section V=12—B,.
Equation WXZ +(X+Z)(Y?—aX?—0Z?)=0. Article Nos. 85 to 94.

85. The diagram of the lines and planes is

Lines.
REREE w=w~- » ow
SI L > ot ot
V=128, X X 13
I 'H_ Il Il
8 'S ) — o
12 o e
¥ oo Biplanes containing
1o 2x12=24 e e . rays 1, 2 and V', 2'
. . . respectively.
0 o o |Plane touching along
1X 3= 38 o edge and containing
. the transversal.
1 : :
(,3 12, ° L Ll
g °
= . Biradial planes eac};‘
~y . containing a ray o
gy | 4x4=16 R s e the one and a ray of
o the other biplane.
2% ° ) . .
L]
7 /
.22 | 2x1=2 ° ° Planes each through
w.ovl|s o . e R the transversal.
= 5 2l o
— G 8.4 °
B K Eg
2 gl 5" g
u oo 0 B,
=5 £
B g
g &
- (o
gE 2%
86. The planes are
-
X=0, [12]
— 191
7=0, [1'2]
-
X +Z=0, [0]

— K/ a+Y —7Za/ =0,
X/ +Y —Zn/5=0,
—Xn/ @+ Y+70/F=0,
X/ @+ Y4-Za/5=0,
L_ZZ(X-I-Z) +W=0,

—2 &/ ab(X +7)+W=0,
2p2

[227]
[11'.221]
[12'.217.

275
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87. And the lines are

@ b ¢ f q h equations may be written

0 0 0 0 1 0 (3) X=0, Z=0

1 0 1 0 0 0 (49) X+%2=0, W=0

0 0 0 0 o 1 (1)  X=0, Y=Zs/0=0

0 0 0 0 —~1 1 (2)  X=0, Y+7Zs/5=0

0 0 0 1 Va 0 (1) Z=0, —X\/a+Y=0
0 0 0 1 —J 0 ) 7Z=0, X at+Y=0
1 1 1 —~ -

. — | —— 2 12 \/a_\/z)) —9 (11')  but for the other lines the co- |
v v ab va ordinate expressions are the
1 1 1 - — nvenient.

_/;7-2; . /\/55 —472 2 2(—\/66—-—/\/[)) _2 (12,) morc convenler
1 1 1 - T

=75 |~ | 220 VatV0)) =2 (21)
1 1 1 - - .

7 J= | s |2 ARl =2 (22)

88. The four mere lines and the transversal are each facultative; the edge is also
Facultative, counting twice; ¢ =0'=", t'=3.

That the edge is as stated a facultative line counting twice, I discovered, and accept,
& posteriori, from the circumstance that on the reciprocal surface the reciprocal of the
edge is (as will be shown) a tacnodal line, that is, a double line with coincident tangent
planes, counting twice as a nodal line. Reverting to the cubic surface, I notice that the
section by an arbitrary plane through the edge consists of the edge and of a conic
touching the edge at the biplanar point; by what precedes it appears that the arbitrary
plane is to be considered, and that twice, as a node-couple plane of the surface: I do
not attempt to further explain this.

89. Hessian surface. The equation is

(X+Z)XZW A+ (X—=Z2yY +(X+Z)(3a, —a, —b, 30X, Z)*=0.
Combining with the equation
KIW +(X+Z)(Y?—aX*—071%)=0,
and observing that from the two equations we deduce
—XZY? (X4 72) (X34 073) =0,

it appears that the complete intersection of the Hessian and the surface is made up of
the line X=0, Z=0 (the edge) twice (that is, the two surfaces touch along the edge),
and of a curve of the tenth order, which is the spinode curve; ¢=10.
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The equations of the spinode curve may be presented in the form
H XZ, ch"-|-z3Z2 Y2, aXP407° ‘=0;
X+ W , Y |
it is a curve 3.4—2, the partlal intersection of a quartic and a cubic surface which

touch along a line.

The binode is on the spinode curve a singular point; through it we have two branches
represented in the vicinity thereof by the equations

(‘W—— ()" W——(Q%)<VXV>~> and (%-_—___%_(%)“’, %-_'—(élz)é(%)?)

respectively. :

90. The edge counted once is regarded as a double tangent of the spinode curve (I do
not understand this, there is apparently a higher tangency); each of the four mere lines
is a double tangent; the transversal is a single tangent; hence §'=2.2-42.44-1, =13.

Reciprocal Surface.
91. The equation is found by equating to zero the discriminant of the binary quartic
P+ dw(Xe+Z2) XU XA+ Z) + 4w (a X027 (X + 1),

viz. multiplying by 6 to avoid fractions, and calling the functlon (*)YX, Z), the coeffi-
cients are

24aw?,
6w(z+2aw),
P+ 4(z-F2)w+4(a+b)w?,
6w(z+26w),
240w* ;
and then writing
L =py4-4(r+2)wt-4(e+0)w’,
M= 4(xz+2bx+azw),
N =16aby*—ba>— ay?,
we find
+I=12—12w*M,
—J=12— 18w LM —54w*N,
and then the equation is

———10§w4{(L2—12102M)3-(L3__13w?LM—54w4N)2}=o,
viz. it 18 |
L3N 4L°M? — 18w LMN — 16w M* — 27w N>=0.
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92. This, completely developed, is
64w’. ab(a+0y{(a+0)y*— (x—2)*}
+32w°. 2ab [ 3(a+0)[(¢—20)x+(—2a+0)z ]y
{+ (@—2)[(—3a+5b)e+(5a—3b)] |
-+ 16w4[ 3ab(a*— Tab-++0%)y*
+[0(9a +26ab—b*)a*—26ab(a--b)rz+a( — o+ 26ad 4 95%)2*y?
1 +(x—2)b(—12a+0)2* 4 22abrz+-a(a—12b)z"]
+ Sw*[  Sab[2a—b)r+(—a4-20)7]y"
+[0(—2a+4-90)2* +b(3a—20)a" s 4o — 20430 )xz*+ a(5a—25)2% |y
+2(x—2)[ —200° + b2’z +-awz® — 2ay°]
+ 4w*{ 3Sal(a+0)y
+[8(9a—2b)a*~4-Babaz+a(—2a--98)2" |y*
i +2[ —6ba* +ba’z— (a-+b)2%2* + awz* — 6azy*
L+ 4o’ (2 —2)
+ 2w 2ab(x+2)y’
j —[30a°+20a%2 - 2anz 30’ Jy*
l +dx(x+2)y
+ y'(ay® —a*)(ey—#)=0,

-

where we see that the section by the plane w=0 (reciprocal of B,) is made up of the
line w=0, y=0 (reciprocal of the edge) four times, and of the lines w=0, ay*—a>=0;
w=0, by*—2*=0 (reciprocals of the rays) each once.

93. The surface contains the line y=0, w=0 (reciprocal of the edge); and if we
attend only to the terms of the lowest order in y, w, viz.

22 {16(xz—z2)'w*+8(a-+2)'w+y'},
which terms equated to zero give

V=i : T
we see that the line in question (y=0, w=0)is a tacnodal line on the surface, the
tacnodal plane being w=0, a fized plane for all points of the line: it has already been
seen that this plane meets the surface in the line taken 4 times; every other plane
through the line meets the surface in the line taken twice. 'We have in what precedes
the & posteriors proof that in the cubic surface the edge is a facultative line to be
counted twice.

94. Cuspidal curve. The equation of the surface may be written

(12— 120 M) (A SLN) — (LM 490N =0,
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and we thus have
4M2+4 3LN=0,

IM + w'N=0,

L —12w* M=0,
or, what is the same thing,
L, 12M, —9N i =0
|

w’, L, M

279

for the equation of the cuspidal curve. Attending to the second and third equations,
these are quartics having in common w*=0, L=0, that is, the line y=0, w=0 four times;

or the cuspidal curve is a partial intersection 4 x 4—4:¢=12.

Section VI=12—-B,—C,.

Equation WXZ4Y*2Z+(a, b, ¢, dY X, Y)’=0. Axticle Nos. 95 to 102.

95. The diagram of the lines and planes is

— e Lines.
W .Cab [
o 4 MU
SIS R R B Mo — =
VIi=12-B,-C,. = e ) o ~ —~
7 3 < X5
o ) 2
x| Il I i I I
S e > © @ =)
0l 1x6= 6 s o | Biplane touching along axis, and
Xb= o . containing transversal ray.
00 | I1x6= 6 : : . Other biplane.
2 ~ . . )
.
o o . Planes each through the axis and
33 | 3x6=18 . . containing a ray of the binode
B . and a ray of the cnicnede.
s . : )
I
2 °
e
~ ° ° °
]2 .
. ° . . Biradial planes of the binode,
13 1 33— 9 each containing ray of axial
OXo= N biplane and a ray of other bi-
° plane.
L L3 L
14 o
.
v o . .
2'3 .
24’ | 3%X2= 6 : ¢ ° Biradial planes of the cnicnode.
s |11 45 : ° ot
= Q = = e
g E 2 |ggE gd
E g B £E § &3
7 £ B |2EZ 7%
) 2 4 B = &
b Q = &9 o=
w s S B =
Q. Hog ©
=y <N
2 o 2 S
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96. Writing (@, b, ¢, dY X, Y)=—d(0,X—Y)(0,X—Y)(6, X—Y), the planes are

X=0, (0]

7 =0, [00]
0,X—Y=0, (227
6,X—-Y=0, [33]
0 X—-Y=0, [447

d(6,X-Y)—-7=0, [12]
d(6,X—Y)—Z=0, [13]
dOX—Y)—7Z=0, [14]

X0, —Y(0,4-0,)—W=0, [23]

Xb,0,—Y(8,46,)—W=0, [2'4]

X6,0,—Y(0,40)—W=0, [54]

97. And the lines are

@ b ¢ N g h equations may be written

0 0 0 0 0 1 (0) X=0, Y=0

0 0 0 0 |-1 d (1) X=0, dY4+Z=0

0 0 0 1 0, 0 @) 0,X—-Y=0, Z=0

0 0 0 1 0, 0 (3) 0,X—~Y=0, Z=0

0 0 0 1 4, 0 (4) IX—-Y=0, Z=0

6, |—1 0 0 0 I (2 0, X—-Y=0, £X4+W=0

6, | —1 0 0 0 0 (8 0,X~Y=0, X+ W=0"

0, |—1 0 0 0 0 4) 6X—Y=0, X+W=0
—db, | d 1| —=(b40) —o0, | d(0,0,—0,0,+0,) | (12.84) but for the remaining Tincs
—dd, d 1 _(02_|_04) —4d,0, d(0254—"0302+6’ ,) (13 . 2’4") the coordinate expressions
—d0, | 4 | 1 |—(h+0) —04 | d@0—00 ) | (14.2y) T comenet

The mere lines are each of them facultative; §'=¢ :3; i=0.

98. Hesslan surface.

The equation is

{Z43(cX+dY)HXZW Y Z+(a, b, ¢, XX, Y)}

—4%(a, b, ¢, AYX, Y)

—3(4ac— 3V, ad, bd, cd, @YX, Y)*=0;

and 1t is thence easy to see that the complete intersection is made up of the line X=0,
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Y =0 (the axis) three times, and of a curve of the ninth order, which is the spinode
curve; ¢=9.
99. The equations of the spinode curve may be written in the simplified form
XZW +Y*Z+(a, b, ¢, IYX, Y)*=0,
47(a, b, ¢, AYX, Y )+ 3(4ac—388*, ad, bd, cd, Y X, Y)'=0,

the line X=0, Y=0 here appearing as a triple line on the second surface; the curve is
a partial intersection, 3 X 4—3.

The node G, is a triple point on the curve, the tangents being the nodal rays.

The node B, is a quintuple point, one tangent being X=0, 3dY+4Z=0, and the
other tangents being given by Z=0, (4ac—30% ad, bd, cd, &*Y X, Y)*=0.

Each of the facultative lines is a double tangent to the curve, or we have 3'=6.

Reciprocal Surface.

100. Comparing the equation of the cubic surface with that for IV=12—2C,, it
appears that the equation of VI=12—B,—C, is obtained by substituting in that equa-
tion the values =0, y=1. Butinstead of making this substitution in the final formula,
it is convenient to make it in the binary quartic (X, Y)*, thus in fact working out
the reciprocal surface by means of the function

(X249 XY —wY?P4-42wX(a, b, ¢, AYX, Y,
the coefficients whereof (multiplying by 6 to avoid fractions) are
624* +24azw,

3xy +18bzw,
¥ — 22w+ 12¢2w,
—3yw—+ 6dzw,
6w,
We find .
H=12—12zwM,
—J=1%—18zwLM—542*w°N,
where

L =y*+6(x+3cz)w,
M=2dxy+6(2¢x—by-+2bdz)w— 4aw’,

N =—4d’2*— 8d(8bx— 2ay+ 2adz)w—12(80*— 4ac)w”.
The equation is

e { (17— 1220M ) — (I3 — 182w LM — 5N 1} =0,
viz. it is
IA(LN+M?)— 182w LMN — 162wM? — 272*w*N*=0,
where however LN-M? contains the factor w, =w P suppose; the equation thus is
1P —182LMN —16zM°—2722wN>=0.
MDCCCLXIX. 2q
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Write

A=4r+412¢z,

B =6cax— 3by+6bdz—2aw,

C=60de—4ady+4ad’z+3(30*— 4ac)w,
and therefore ,
L=y 4+ Aw,

M=2dzy+2Bw,

N = —4d?*—4Cw,
then we have

P=.37,{ — (y*+Aw)(4d’x* -+ 4Cw) + (2day + 2Bw)*}
= —4{Cy*—2Bdxy +Ad*»* + w(AC—DB?)},

or the equation is
41 Cy*—2Bday+Ad 2> +w(AC—-DB2)}

+182LMN+4-162M2 4 2722wN? =0.
101. Consider the section by the plane w=0, we have L=y? M=2dzy, N=—4d%?,
and the equation becomes 4y'(Cy*—2Bday-+Ad’e*)+(128—144=)—16d%y*2=0 ;
“which substituting for A, B, C the values
A=42+12¢z,
B =6cx~—3by--6bdz,
C =6bde— 4ady+-4ad’z,
becomes 16dy*(y — dz)(da®— 3ca®y-- 3cay’—ay’)=0; which is in fact the line w=0, y=0
(reciprocal of the edge) three times, and the lines w=0, (y—dz)(d, —¢, b, —a ¥, y)*=0
(reciprocals of the biplanar rays) each once. Observe that the edge (X==0,Z=0) is not
a line of the cubic surface, but the reciprocal line y=0, w=0 presents itself as an oscular
line of the reciprocal surface. _
102. The equations of the cuspidal curve are in the first instance obtained in the form
L, M, 3N
‘ 122w, L, —4M

-

Consider the two equations

L' —12M=0,
LM4 92wN =0,

cach of the fourth order, but which are satisfied by zw=0, L=0; that is, by
(w=0, °=0), (=0, y*+42w=0). The line (w=0, y=0) however presents itself in
the intersection of the two surfaces, not twice only, but 4 times. To show this, observe
that the line in question is a nodal line on the surface L2—12zwM=0; in fact, attending
only to the terms of the second order in Y, w, we find

{(4x-+12¢2)*—144crz—144bd=*}w* — 24dxzyw=0,
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giving the two sheets
{(42+1202)’—144caz—1440d2*}w —24drzy=0 and w=0;

in regard to the last-mentioned sheet the form in the vicinity thereof is given by w=Ay?,
viz. we have approximately L=y, M=2dzy, and thence y*—12z.Ay*. 2d2y=0, that is,
A=271,§z;5 or w=271%;2, %*; the line is thus a flecnodal line on the surface L?—12zwM=0.
Next as regards the surface LM4-92wN=0; the line y=0,w=0 is a simple line on the
surface, the terms of the lowest order being 9zw(—4d’2*)=0; that is, we have w=0, and
for a next approximation w=Ag? viz. L=y, M=—2dzy, N=—4d"?, and therefore
—2dxy*+92. Ay?(— 4d’2*)=0,thatis, A= —igil-w—z" or W= — iSlﬁz— %% there is thus a three-

fold intersection with one sheet and a simple intersection with the other sheet of the
surface 12—12zwwM=0. The surfaces intersect, as has been mentioned in the conic
2=0, y*+42w=0; or we have the line y=0, w=0 four times, the conic once, and a
residual cuspidal curve of the order 4.4—4—2, =10; that is, ¢'=10.

Section VII=12—B,.
Equation WXZ4Y*Z4+YX*—7°=0. Article Nos. 103 to 116.
103. The diagram of lines and planes™® is

Lines.
[
2 @ W — =
Sl N O et I
VII=12-B,. X X X X
— (5 o <
Il I i Il
N 3 & )
01 . o o
1x15=15 « |Torsal biplane.
L]
00 o e .
1x20= 5 oo *  |Ordinary biplane.
g
,_f_é, 12/ . . .
P4 *
2x 5=10 . Planes each containing
13 . . . a mere line.
34 45| .
= = = b=
g g8 |ed| &
@ g, Eo ®
g E® |82
2 ® o ) §
' & £
g =
q 1

* The marginal symbols in the preceding diagrams constitute a real notation of the lines and planes; but
here, and still more so in some of the following diagrams, they are mere marks of reference, showing which are
the lines and planes to which the several equations respectively belong.

202
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104. The planes are The lines are
7 =0, [10] X=0, 7Z=0, (0)
X=0, [00] Y =0, 7=0, (1)
Y +7Z=0, 121 X=0, Y+Z=0, (2")
Y —-7=0, [137] X=0, Y-Z=0, (3

X—W=0, Y4+Z=0, (124
X4+W=0, Y—-Z=0, (138").
105. The two mere lines arve facultative, and the edge is also facultative; ¢=0=3;
t'=0.
106. Hessian surface. The equation is
L(WXZ+Y 2 +YX—77)
—A4XY7 - X*4-474=0.
The complete intersection with the surface is thus given by the equations
WXZ+Y7Z+YX*—7=0,
—AXPYZ X - 474 =0,
which is made up of the line X=0, Z=0 (the edge) four times and a curve of the

eighth order. To see this, observe that the last-mentioned surfaces have in common
the line X=0, Z=0, which is on the first surface a torsal line (equation in vicinity

being Z= —% X?), and on the second surface a triple line (equations in vicinity being
Z:—;;X“’ and X2=%Z3). But Z=—%X2 touches Z=%X2, and the line counts thus
(2+2=) 4 times.

107. I say that the complete intersection is the line (X=0, Z=0) three times
together with a spinode curve made up of this same line once and of the curve of the
eighth order; and that thus o =9.

The discussion of the reciprocal surface in fact shows that the reciprocal of the edge
is a singular line thereof, counting once as a nodal and twice as a cuspidal line thereof’;
the cuspidal tangent planes are the reciprocals of the several points of the edge, and
the edge is thus part of the spinode curve. The reasoning may appear to show that
the edge should be counted twice, but it must be counted once only, making the order
=9 as mentioned.

108. I find that the octic component of the spinode curve is a unicursal curve, the
equations of which may be written

X:Y:Z:W=166*:464-166°:166*: —5—84*—166°;
the values of § at the binode B, are =0, =c0, and we thus obtain in the neigh-
bourhood thereof the two branches

Y p (BN X 5B\, X (ZNEY (7
o B () e 3= = (B
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109. Each of the lines (X—W=0, Y4Z=0) and (X+W=0, Y—Z7=0) is a double
tangent of the spinode octic; in fact for the first of these lines we have

166°4+80*+166*+6=0, 16¢°+416¢*+46=0,
that is,
(268 41 (4¢*—464-5)=0, 44(26°41)*=0,

so that the line touches at the two points given by 28°4+1=0; and similarly the other
line touches at the two points given by 2*—1=0.

The edge X=0, Z=0 has apparently a higher contact with the spinode octic, viz.
the equations X=0, Z=0 are satisfied by §=0 twice, d=co five times; but it must be
reckoned only as a double tangent. Hence 3'=2.2+2, =6.

Reciprocal Surface.

110. The equation is obtained by equating to zero the discriminant of the binary

quartic
X (yli—wX) + 4w (wl? + 22X 4 2X3),

viz. calling this (Y X, Z), the coefficients (multiplying by 6) are
(6w?, —3yw, y*+4aw, bzw, 24u°);
and then writing
L= y+daw,
M= —2yz—4u’,

N=—4224+16aw,
we have
I=12—12u*M,

—J=12—18w’LM —54w'N,
and the equation is, as in former cases,
13(LN+M?)—18w’LMN — 16w’M’* — 27w*N*=0 ;
but LN-+M? and therefore the whole equation divides by w, and we thus obtain
1612 — a2+ yx +w(yz + 4a*)+w*) — 18w LMN — 16wM* — 2Tw*N*=0;
or, completely developed, this is
w’. 64
+w*.32 ( 3yz—4a°)
+w*. 162( 5% 4 922)
4w, ( y*+30y%7+160y20>— 272" +64a")
+w?. 4a(11yPz 412907 — 9y2* — 42%0°)
+w . P 120 —y—82%?)
+ vl y—#)=0.
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111. To transform the equation so as to put in evidence the nodal curve, I collect the
terms according to their degrees in (y, 2) and (2, w); viz. the equation thus becomes
64x'w* —128a°w® 64w’
+2* (— 162w+ 144xiv‘)
+zy( 1602°w°4 96w° )
+y*( 48x°w4 80zw?)
Azt —2Tw?
+2% . — 362w
+2%*. —8a"w- 30w
+z°. 44w’
4+ 1227w 4w’

4% —w

+2%yt —x

+2y°. w

+9°. =0.

And if for a moment we write z=a -}y, y=«—y and collect, ultimately replacing , y by
their values 3(z-+9), 3(2—y), the equation can be expressed in the form
64u(a* —w?)

+ 8wz +y ) (x +w)(z+3w)

+ 8wz —y Y(z —w (x—3w)

—32w*(2* —y?) (2 —w’)x

A+ dw(z 4y Yz 4w

— 0 (s +y Ne—y)(o+w)Ea+T)

+ w (22— (112°—2Tw?)

— 0 (= +y) (e—y)(e—w)(3a—Tw)

+ Jo (s —y Ma—w)

— ¥ =) (twtay)=0,

and observing that we have

2wt ay=—z(x—w)+2(z-+y)

= z(z+4w)—2(z—y),
we see that every term of the equation is at least of the second order in z--y and #—w
conjointly; and also at least of the second order in z—y and z-+w conjointly; that is,
the surface has the nodal lines (z-++y=0, 2—w=0) and (¢—y=0, r+4w=0), which are
the reciprocals of the lines 12’ and 18' respectively. The nodal curve is made up of
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these two lines and of the line =0, w=0 (reciprocal of edge), as will presently appear ;
so that we have §'=3.
112. The equations of the cuspidal curve are

12— 120°M =0,
LM 4+ 9w'N =0,
AP+ 3LN =0.

Attending to the two equations
L =12wM =y*+ 8y’ zrw -+ 162w+ 24yzw* + 48w' =0,
LM+ 9w’N =92+ 2w+ dayzw -+ (8 — 12 =) — 64aw’ 4 182°w*=0,

these surfaces are each of the order 4, and the order of their intersection is =16.
But the two surfaces contain in common the line (y=0, w=0) 7 times; in fact on the
first surface this is a cusp-nodal line 4aw-+7°+ Ayi=0; and on the second surface it is
a nodal line w(4ay+182w)=0; the sheet w=0 is more accurately 4aw+y*+By*...=0;
whence in the intersection with the first surface the line counts 5 times in respect of the
first sheet and 2 times in respect of the second sheet; together (542=)T7 times, and the
residual curve is of the order (16 —7=)9.

118. T say that the cuspidal curve is made up of this curve of the 9th order, and of
the line y=0, w=0 (reciprocal of the edge) once; so that¢=10. In fact, considering
the line in question y=0, w=0 in relation to the surface, the equation of the surface
(attending only to the lowest terms in y, w) may be written

—22(y 4 daw)* - w( — 52+ — 36ays®) + &e. =0,
giving in the vicinity of the line

daw- 2= Ays,
and then

that is, A’=—2 5—2 or dawty=/ :—i.—z‘;y%; wherefore the line is a cusp-nodal line,
counting once as a nodal and once as a cuspidal line; and so giving the foregoing results
v'=3, ¢=10.

114. T revert to the equation which exhibits the nodal lines (#—w=0, y+2=0),
(x4w=0, y—2=0) for the purpose of showing that they have respectively no pinch-
points; that is, that in regard to each of them we have j/=0. In fact for the first of
these lines, neglecting the terms which contain #—w, y-+2 conjointly in an order above
the second, the equation may be written

64w’ (z+w) (r—w)?

+ Sw(etw)(e+3w)(z +7
+ 8wz —y ) (x—3w)(z—w)®
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— 32wz —y) (x+w)r  (v—w)(z+y)
+3w (2 —y P(11a*—27w*)(z+y)*
—w (z—y)(Be—Tw) (z—w)(z+y)

+iw (z—y) (z—w)
+9% (2—y) (z—w)(z+y)
—y'z (2—y) (z+y)=0,

viz. this is
(A, B, CYz—w, z+y)=0,

where, collecting the terms and reducing the values by means of the equations 2 —w=0,
z+y=0, or say by writing #=w, —y=2, we have

A= 64wi(z+4w)’ = 2566w®
+ 8w (z—y)(x—3w) — 64w’z
+ tw(z—y)* + 4wzt
= 4dw(z*—8u?),
B=—-32(z—y)(x+w)rw* =—128w'
—w(z—y)’(B3r—"Tw) + 32w%’
+y°2(z—y) - %
= —2z(2*— 8w?)’,
C= 8w(e+tw)(z+3w) = 128w°
+iw(z—y)(1la*—2Tw®) —  32w°2
—xy*(2—) + 2wz
—ay*(z—y) + 2wz

= 2w(z"—8uw*).

Hence the condition 4AC—B*=0 of a pinch-point is (2’—8w?)’=0, so that the pinch-
points (if any) would be at the points a—w=0, y-+2=0, 22— 8uw’=0; or say at @, ¥, z,
w=1, —24/2, 24/2,1. But these values give I, M, N=12, 12, —16; values which
satisfy the equations 12—12u*M =0, LM+ 9w*N =0, 4M*4-3LN=0, and as the points
in question are obviously not on the line y=0, w=0, they lie on the ninthic component
of the cuspidal curve, being in fact points §', and not pinch-points.

The line y=0, w=0 qua nodal line would have every point a pinch-point, but being
part of the cuspidal curve, no point thereof is regarded as a pinch-point; that is, in
regard to this line also we have y/=0. And therefore for the entire nodal curve j'=0.

115, The cuspidal ninthic curve is a unicursal curve, the equations of which can be
very readily obtained by considering it as the reciprocal of the spinode torse; we in
fact have |

riy:z:w=ZW42XY : 2YZ4+X*: WX4Y?*—37: ZX,
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or substituting for X, Y, Z, W their values (=162, 40416¢°, 166°, —5— 84*—166°) and
omitting a common factor 166%, we find for the cuspidal curve
xiy:z:w=>30+4246°—166 : 246°4-320° : —4—48¢*: 166°
(values which verify the equation Xao+4Yy-+Zz4+Ww=0); the spinode curve being
thus of the order=9 as mentioned.
For §=co we have the singular point (y=0,2=0, w=0), (reciprocal of torsal biplane),
and in the vicinity thereof @ : 5 : z: w=1: —24%: 30=°: —6~F, therefore

:1/ 2 w y 5 : z 3
()=—4% (©=—u()"

For =0 we have the singular point =0, y=0, w=0 (reciprocal of the other
biplane), and in the vicinity thereof 2 : y : 2 : w=—240: —66*: 1. —4¢, therefore

Y _32(%\", %_ase(%\"
2= 8\=z 27 27 \z
116. The section of the surface by the plane 2=0 is an interesting curve. Writing
z=0 in the equation of the surface, I find that the resulting equation may be written

(64w®, 144aw?, w*+ T62°w 2y w*+272°, 4> — 32zw)*=0,
where observe that
64w® (w4 762w +ay?) — (7T200°)
=64w'[w(w*+272%) + 2(y*— 32z2w)] ;

so that the curve has the four cusps w?-4272°=0, 5*—822w=0; the plane z=0
intersects the cuspidal ninthic curve in the point (y=0, 2=0, w=0) counting 5 times,
and in the last-mentioned four points: in fact, writing in the equations of the ninthic
z=0, that is 14+120'=0, we find @, y, w=350, 626>, 166°, and thence w*+272°=
047 (14+126')=0, y*— 322w=0.

The curve has also nodes at the points (y=0, 2+w=0; y=0, t—w=0), viz. these
are the intersections of the plane z=0 with the nodal lines (y —2=0, 2+w=0) and
(y+2=0, 2—w=0), and it has at the point (y=0, w=0) (intersection of its plane with
the cusp-nodal line y=0, w=0, and quintic intersection with the cuspidal ninthic)
a singular point=2 cusps47 nodes; hence the curve has cusps =(4+2=)6; nodes
(247=)9; or 2 nodes-+3 cusps=36; class =0, as it should be.

3DCCCLXIX. 2R
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Section VIII=12—3C,.

Equation Y+ Y(X4Z+4+W)4-4aXZW=0. Article Nos. 117 to 125,
117. The diagram of the lines and planes is

Lines.
e N ] © w N © » ~
VIIT=12-3¢, |& o e e
X X X
) — N
I I I
1o - -
N © o ©
7 N ® ° |Planes each touching
8 ¢ .. along an axis and
3X2= 6 : containing the cor-
9 . .. responding  trans-
. versal.
12 . e .
34 ‘ .. ° Biradial planes each
3x2= 6 » * _ containing two rays
56 L. L of the same node.
£ 13 . . .
_‘§ . °
M2 . o e
16 . . . Planes each containing
_ . . an axis, and two rays
g5 | Oxd=24 . . . through the terminal
A . . nodes respectively.
6 L . L]
35 ’. . .
780 | 1x8= 8 . . o |Plane through the three
= . . . axes.
780 | 1xli= e o o Plane through the three
14 45 : transversals.
& = B
7
e &3 g
ELl B g
= Q = =
S wm
= 38 X
=] & o 5]
s 0 =5 @
& £R
~y A a
=] % & g
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118. Take m,, m, as the roots of the equation (m—1)*=4am, so that m,+m,=2-4a,
mm,=1, then the planes are

119. And the lines are

X =0,

Y =0,

7 =0,

Y+7Z +X =0,
Y4+ X4+W=0,
Y+Z +W=0,
Y=(m—1)X,
Y=(m,—1)X,
Y=(m,~1)Z,
Y=(m,—1)Z,
Y:(ml—l)W,
Y:(m2—1)W,
Y=0,

[ 7]
[ 8]
[ 9]
L 12]
[ 34]
[ 56]
[ 13]
[ 24]
[ 16]
[ 28]
[ 46]
[ 38]
[789]

Y+X+Z4+W=0, [789]

a b ¢ f g I equations may be written
0 0 0 -0 0 1 (1) X =0, Y=0
0 0 0 1 0 0 (8) 7Z =0, Y=0
0 1 0 0| 0| 0 | (9 W=0,Y=0
1 1 1 0 0| 0 | () Y+Z+X =0, W=0
0 0 1 ~1 1 0 (g) Y4+X4+W=0, Z =0
1 0 0 0 | -1 1 9) Y+Z4+W=0, X =0
1 1
0 0 0 m—1 1 M1 (1) Y=(m1-1)X =(7’)22—-1)Z
1 1
0 0 0 my—1 1 my—1 (2) Y=(m—1)X =(m,—1)Z
1 1
—1 i | Y 0 0 1oz | (B Y=(m—1)W=(m—1)X
1 1
—1 my—1 0 0 0 m;—1 (4) Y=(m—1)W=(m,—1)X
1 1
0 m—1 1 my—1 0 0 () Y=(m—1)Z =(m,—1)W
. .
0 1 L= 0 0 (6) Y=(m,—1)Z =(m,—1)W
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120. The three transversals are each facultative; ¢'=0'=3; ¢'=0.
121. Hessian surface. The equation is
4aX7ZW(BY + X472 4W) 4+ V(X422 + W?--2X7 — 2XW — 27 W) =0.
The complete intersection with the cubic surface is made up of the lines (Y =0, X=0),
(Y=0, Z=0), (Y=0, W=0) (the axes) each twice, and of a sextic curve which is the
spinode curve; ¢ =6.
The spinode curve is a complete intersection 2x 8; the equations may in fact be

written
Y4 Y2 (X4+Z4+W)+4aXZW =0,
Y’ +H4Y(XH-Z+ W)+ 4(XZ+XWHZW)=0;
the nodes D, C, A are nodes (double points) of the curve, the tangents at each node
being the nodal rays.

Each of the transversals is a single tangent of the spinode curve; in fact for the
transversal Y47 -4+X=0, W=0, these equations of course satisfy the equation of the
cubic surface ; and substituting in the equation of the Hessian, we have Y*(X—Z)=0.
But Y44 +4+X=0, W=0, Y=0 is a point on the axis W=0, Y=0, not belonging to
the spinode curve; we have only the point of contact Y+X+47=0, W=0, X—-Z=0.
Hence 3'=3.

Reciprocal Surface.
122. The equation is found by means of the binary cubic,
al(T—yUP+(T—2U)(T—2U)(T—wl),
viz. writing for shortness
B=z+z+w,
y=2z--2W-+zw0,
0 =axzw;
this is a binary cubic (x){T, U)*, the coeflicients whereof are
3(a+1), —2ay—p, ay’+vy, —30,
and the equation is hence found to be
46y’ — By +vy—?2)
+ (127 — By — (8By+ B60)y"+ (30834 85y — 363y + 275}
+2a{(6y*— By —960)y 4 (1280 — 2037 —18¢0)y + 2¢° + 278> — 9Byo}
— (B + 18Byd— 430 — 4 —278*) =0 ;
or substituting for 3, ¥, ¢ in the first and last lines their values

(=a424w, az+aw+tzw, xzw),
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this is
4o’y (y—a)y—2)(y—w)
+a{(12y— )y — (8By -+ 36D)* -+ (30834 8y — B2y + 2757}
20 (69— By — IB)y -+ (1283 — 2By — 1893 )y + 29°+ 27— OByd)
—(z—2)(r—w)(z—w)*=0.
123. The nodal curve is made up of the lines (y=x=2), (y=r=w), (y=2=w), reci-

procals of the three transversals.
To show this I remark that, writing

F=(—=y)+(z—y)+(w=y),
Y =(@=y)e—y)+@—=y)w=9)+(z—y)w—y),
¥ =(e—y)z—y)lw—y),
the equation of the surface may be written
a7y (y—a)y—2)y—w)
+a*{y*(12B'0 —y"?)+a . 1858' 42732}
+2a{y(— 63" +20'y2+ 9y/0 )+ 2¢° 42782 — 930"}
—(r—2)(z—w)(z—w)*=0,
whence observing that o' is of the order 1 and & of the order 2 in (z—y), (z—y) con-
jointly, each term of the equation is at least of the second order in (z—y), (z—) con-
jointly; or we have y=a=z, a nodal line; and similarly the other two lines are nodal
lines.

124. The foregoing transformed equation is most readily obtained by reverting to the
cubic in T, U, viz. writing p=a—y, r=2—y, s=w—y, and therefore x=y-+p, z=y+7,
w=y-s, the cubic function (putting therein T="V4-yU) becomes

a(V+yU)V24(V—pU)V—rU)(V—-sU);
writing (3, ¥/, 8 =p+r-+s, pr+ps-+rs, prs, the coefficients are (3(¢+1), ay—p', ¢/, —3%),
and the equation of the surface is thus obtained in the form

27(a+1)3"
+18(a-+1)(ay—B)¥
+ 4(a+1)y"
— Hay—PW
— (g—B)y*=0,
which, arranging in powers of @, and reversing the sign, is the foregoing transformed

result.
125. The cuspidal curve is given by the equations

l 8(a +1), —2ay—B, ay’ ty 'l =0,
—2ay—3, ap +y, =9
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or say by the equations

3(a+1)ay*+v)—(2ay+B)*=0,
a(a—3)y*+4aBy—3(a+1)y=0,
—3(a+1)0+(2ay+p)(ay’+7)=0,

consequently ¢=6. It is to be added that the cuspidal curve is a complete intersec-

that is

and

tion, 2x 3.

126. The diagram of the lines and planes is

Section IX=12—2B,.
Equation WXZ4(a, b, ¢, dY(X, Y)*=0. Article Nos. 126 to 136.

Lines.
EE T N O CR o
«al =z ot
IX=12-2B,. X X
(X ©
X i I
N ® ©
) Common biplane, os-
01 1x6=6 cular along the axis.
7 Other biplanes of the
2x6=12 two binodes respect-
i 8 ively.
Qg),
A4
3x9=27 Planes each through
25 | . ° | theaxisand contain-
: ing rays of the two
6 binodes respectively.
6 4
EEEES < £
& ? =N %’u
B oo Q- % 9
g Re T E
Eegfe
BELE o
$ g “’3 aE g.
g
o E g
=k °
: =+ Q g =
5887 %

127. Writing (@, b, ¢, XX, Y)'=—d(f X—=Y)(fiX—Y)(f;X—Y), the planes are

X =0,
7 =0,
W=0,
£ X—-Y=0,
f: X—Y=0,

£ X--Y=0,

[ 0]
[ 7]
L8]
[14]
[25]
[36];
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and the lines are
X=0, Y =0, (0)
FX=Y=0, Z =0, (1)
fX-Y=0, Z =0, (2)
FX-Y=0, Z =0, (3)
fiX—=Y=0, W=0, (4)
fX=Y=0, W=0, (5)
fX—=Y=0, W=0, (6)
128. There is no facultative line; ¢ =8=0, ¢ =0; and hence also 3'=0.
129. Hessian surface. The equation is
X{ZW(cX +dY)—3X(ac—0% ad—be, bd—cYX, Y)} =0,

so that the Hessian breaks up into the plane X=0 (axial or common biplane) and into

a cubic surface.
The complete intersection of the Hessian with the cubic surface is made up of the
line X=0, Y=0 (the axis) four times; and of a system of four conics, which is the

spinode curve; ¢=8.
In fact combining the equations
WXZ4(a, b, ¢, aYX, Yy =0
ZW (X +dY)—3X(ac—0b*, ad—be, bd—c{X,Y)*=0,

these intersect in the axis once, and in a curve of the eighth order which breaks up
into four conics; for we can from the two equations deduce

(a, b, é, AYX, Y)P(eX4-dY)+3X*(ac—8?, ad—be, bd—c(X, Y)*=0,
that is,
(4ac—30°, ad, bd, cd, @YX, Y)*=0,
a system of four planes each intersecting the cubic XZW 4-(a, b, ¢, dY(X, Y)*=0 in the
axis and a conic; whence, as above, spinode curve is four conics.
It is easy to see that the tangent planes along any conic on the surface pass through

a point, and form therefore a quadric cone; hence in particular the spinode torse is
made up of the quadric cones which touch the surface along the four conics respectively.

and

Reciprocal Surface.
130. The equation is obtained by means of the binary cubic
X(aX4+yY) +4zw(a, b, ¢, AYX, Y),
viz. calling this (* )X, Y)? the coeflicients are
(382 +12azw, 22y + 1202w, y*+12c2w, 12dzw).
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The equation is found to be
432(a*d>— babed +4ac® 4+ 46°d— 30°c*)z*w?
+216[(ad®— 3bed + 2¢*)a” +( —2acd+40*d — 2b¢*)xy +( — abd +2ac® — b¢)y* ] w*
+ 932 —12¢da’y 4 (10bd -+ 8¢*)a’y> — (4ad~8be)xy’ + (4ac—b%)y Jew
—yXda*—3ca’y+3bay*—ay®)=0.
The section by the plane w=0 (reciprocal of B;=D) is the line w=0, y=0 (reci-
procal of edge) three times, and the lines w=0, da’— 3ca% -+ 8bxy*—ay*=0 (reciprocals
of the biplanar rays). And similarly for the section by the plane 2=0 (reciprocal of
B,=C).
The section by the plane y=0 is made up of the lines (y=0,2=0), (y=0, w=0) each
once, and of two conics, y=0,

16(a*d* — 6abed+-4ac® +45*d— 8b°¢*)2*w®
4+ 8(ad®—3bed+20%)a%2w
+ d2'=0.
131. There is not any nodal curve; 4'=0.
132. Cuspidal curve. The equations may be written
“ 32* +12azw, 2xy+12bzw, 4*4+12c2w | =0.
20y +12baw,  y*+12c2w, 12dzw ”
Forming the equations-
(bd—c*) . 1442w+ 2(day —0y®) . 1220 —g* =0,
(ad—be) . 1442°w* + (Bda® — 20y — by®) . 122w —2ay° =0,
these are two quartic surfaces having in common the lines (y=0, w=0), (=0, z= 0):
attending to the line (y=0, z=0), this is on the second surface, an oscular line,
1 o . .
t=1g4ew?’ s on the first surface it is a nodal line, the one tangent plane being
6(bd—cw.z+drz.y=0, the other tangent plane being z=0, but the line being in
regard to this sheet an oscular line, z:ﬁ% 9°.  Hence in the intersection of the two

surfaces the line counts (143=)4 times; similarly the line y=0, w=0 counts
(143=)4 times; and there is a residual intersection of the order (16 —4—4=)8, which
is the cuspidal curve; ¢=8.

133. The cuspidal curve is a system of 4 conics; in fact from the preceding equations
written in the forms

(b —¢, 2y —ay), —y"Y122m, 1=,
(ad—be, 3da®—20xy—1by?, —2ay"Y12zw, 1)2=0,
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eliminating 2w, we obtain
3(bd—-¢?), N
2(—ad?—3bed +4¢*),
3 6(acd+b°d—20¢), (x, y)=
6(bc—ad)b,
a*d—0°,

which shows that the cuspidal curve lies in 4 planes, and it hence. consists of four conics;
these are of course the reciprocals of the quadric cones which touch the cubic surface
-along the four conics which make up the spinode curve.

134. The equation of the surface, attending only to the terms of the second order in
9, 2,0, s 27d**2w=0; it thus appears that the point y=0, 2=0, w=0 (reciprocal of the
plane X=0) (which is oscular along the axis joining the two binodes, or BB-axis) is a
binode on the reciprocal surface, the biplanes being 2=0, w=0, viz. these are the planes
reciprocal to the binodes (X=0, Y=0, W=0) and (X=0, Y=0, Z=0) of the cubic
surface; we have thus B'=1.

It is proper to remark that the binode y=0, 2=0, w=0 isnot on the cuspldal curve,
as its being so would probably imply a higher singularity.

185. A simple case, presenting the same singularities as the general one, is when
a@=d, b=c¢=0: to diminish the numerical coefficients assume a=d=+%, the cubic
surface is thus 12XZW4X°?+4Y?=0, and the equation of the reciprocal surface, mul-
tiplying it by 4, becomes

2w’
+62°2"w?
+(92* —122°y )ew
— (=) =0,

viz. this is the surface
6

4y
— 4922+ Sew)
+2w(32°+2w)*=0

considered in the Memoir ¢ On the Theory of Reciprocal Surfaces.” The cuspidal curve
is, as there shown, composed of the four conics y=0, 8s°+2w=0 and y°—2a°=0,
p*—zw=0; and it is there shown that the two points (z=0, y=0, 2=0), (2=0,
y=0, w=0), each reckoned 8 times, are to be considered as off-points of the reciprocal
surface.

136. The like investigation applies to the general surface, and we have thus § =
the points in question are still the points (=0, y=0, 2=0), (#=0, y=0, w=0) ; viz.
these are the points of intersection of the surface by the line (#=0, y=0), which points
are also the common points of intersection of the four conics which compose the cus-
pidal curve, that is, they are quadruple points on the cuspidal curve; it does not appear

MDCCCLXIX. 28
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that the points are on this account, viz. gua quadruple points of the cuspidal curve, off-
points of the surface, nor does this even show that the points should be reckoned each
8 times. As already remarked, the singularity requires a more complete investigation.

Section X=12—B,—C,.
Equation WXZ+4(X4Z)(Y>—X?)=0. Article Nos. 137 to 143.
187. The diagram of the lines and planes is

Lines.
S L RO Y =
NP e [%) —t
X ve X X 3
X=12-3B,-C,. 'I'I" 1o - o @
o Il il 1l Il
g - - ® o »
_ : * °  |Biplane touching along axis,
0 11x12=12 * : and containing edge.
3 |1x12=12 - . Other biplane.
11’ . o .
. Planes each through the
4 _ . axis and containing a bi-
% g2 |2% 8=16 ° . . . planar ray and a cnicno-
= . . dal ray.
. o e Plane touching along the
311X 3= 3 ° edge and containing the
. mere line.
12" |1x 2= 2 o P Biradial plane through the
_ . two enienodal rays.
6 45
= o & =
25| F | gD | gf | gF
5 o 2B 2o %n
g ) g i- | U
- == i3 oo
= o] o8 =3 2
g z 5| EE | &
& E By B =
5 & g £
<] =3
138. The planes are and the lines are
X =0, [0] X=0, Y =0, (0)
7Z =0, [3] X=0, Z =0, (3)
X —Y=0, [11] X—Y=0, Z =0, (1)
X +Y=0, [22] X+V=0, Z =0, (2)
W=0, (3] X—-Y=0, W=0, (1)
X +Z=0, [1?] X+Y=0, W=0, (2)

X4+Z=0, W=0, (12)
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139. The facultative lines are the edge counting twice, and the mere line ;
e=0=3; ¢'=1.
140. Hessian surface. The equation is
XX +Z)ZW 4 3X*—X7Z)+ Y (X —Z)*=0.

The complete intersection with the surface consists of the line (X=0, Y=0), the axis,
4 times; the line (X=0, Z=0), the edge, 2 times; and a sextic curve, which is the
spinode curve; ¢=6.

Writing the equations of the surface and the Hessian in the form

X(ZW4+Y?)—X4+Z(Y*—X*)=0,
X(X+Z)EW + Y?) 4 (Z— 3K){ —X* 4+ Z(Y*—X?)} =0,
we see that the equations of the spinode curve may be written
ZW +Y*=0,
=X+ Z(Y*—X*)=0,
viz. the curve is a complete intersection, 2 X 3.

P 4
There is at B, a triple point %_____ —_ (%) R %: — (%)F; and at C, a double point, the

tangents coinciding with the nodal rays W=0, Y?—X?=0.

The edge and the mere line are each of them single tangents of the spinode curve.
But the edge counting twice in thenodal curve, its contact with the spinode curve will
also count twice, that is, we have 3'=2.1+1, =3.

Reciprocal Surface.
141. The equation is obtained by means of the binary cubic
M X (X Z + 4w Z(X + Z) (@ X 4 2Z) X 72
or calling this (+J(X, Z), the coefficients are
(12w?, 8w’4-dwe, 4w’ 4wae+4wz+77, 12wz2),
and thence the equation is found to be
16wy — (x—2)*]
+ 16w 20— b2 )y*— 2(a — 22 )(x—2)")]
+ 8w[y'+(2*—az+622)y* — 22 (2 —2)"]
+ 4w[(2x+ 32)y*—2a%(x +2)y7),
+ ¥y —a’)=0,
where the section by the plane w=0 (veciprocal of binode) is y*(y*—a?)=0, viz. this
is the line w=0, y=0 (reciprocal of the edge) four times, and the lines w=0, y°—42*=0
(reciprocals of the biplanar rays).

The section by the plane 2=0 is found to be (y*—a*)(y*+4aw +4w?)*=0, viz. this
282
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is the two lines 2=0, y>—a®=0 (reciprocals of the nodal rays), and the conic z=0,
92 +4aw--4w*=0 (reciprocal of the nodal cone WX 4+Y2—X2=0) twice.

142. Nodal curve. The equation shows that the line =0, £—2z=0 (reciprocal of the
line W=0, X+Z=0) is a nodal line on the surface.

It also shows that the line y=0, w=0 (reciprocal of the edge)is a tacnodal line
(=2 nodal lines) on the surface; in fact attending only to the lowest terms in g, w, we
have

—a?[16(x —2)w*+8(a+2)wy*+y*1=0,

4(fv—z)w+%%%y2=0,

that is,

two values, w=Ag?, w=DBy?, which indicates a tacnodal line.
The nodal curve is thus made up of the line y=0, #—z=0 once, and the line y=0,
w=0 twice; ¥ =3.
143. Cuspidal curve. The equations
120* Sw? 4w, 4w+ 4wr+ 4wzt
8wt 4w, 4w+4wzr+4wz+y°, 12wz

=0

(4w +22)*— 3(4w2+ 4wz +4wz+9y*)=0,
— 86w+ (2w+2)(4w* + 4wz +4dwz+7*) =0,

give

or, as these are more simply written,
dwr dwe —12wz 4+ 4a* — 3y*=0,
S+ 12w — 28w’z +w(4a® + 4wz 4-2y°) +ay’ =0,

so that the cuspidal curve is a complete intersection 2 3; d=6.
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Section XI=12—B,.
Equation WXZ4Y*Z4X*—7°=0. Article Nos. 144 to 149.
144. The diagram of the lines and planes is

X
X

g 0=Z—X°
I 0=ZtXx
0=Z ‘0=X

(1]

X1=2-B,.

=1 X1

31=9 Xg
44

X=0 0/|1x15=15 Oscular biplane.

X=0 3 |1x30=30 Ordinary biplane.

Z 15

o3pm

ouediq Lieu
-Tpao oyy ur skeyy

where the equations of the lines and planes are shown in the margins of the diagram.

145. The edge is a facultative line counting 3 times; this will appear from the dis-
cussion of the reciprocal surface. Therefore ¢=0'=38; t'=1.
146. Hessian surface. This is

Z(WXZ+YZ— 83X —37%)=0,

breaking up into Z=0, the oscular biplane, and into a cubic surface (itself a surface
XI=12—B;). The complete intersection with the cubic surface is made up of the line
X =0, Z=0 (the edge) six times, and of a residual sextic (=3 conics), which is the
spinode curve; ¢=6.

The equations of the sextic are in fact XZ4Y?*=0, X*4-Z°=0, so that this consists
of three conics, each in a plane passing through the edge.

The edge touches each of the three conics at the point X=0, Z=0, Y=0; but it
must be reckoned as a single tangent of the spinode curve, and then counting it three
times, 3'=3.
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Reciprocal Surface.
147. The equation is obtained by means of the binary cubic

(12w?, 4w, y*+ 4w, —120°YZ, X)’,

432u°
+72wz(4aw +y*°)
— 64w’*
+(4aw-+y°)°
—2(4aw+y°)’=0,

viz. it is

or, completely developed, it is
w. 432

+wt. 2882z

+w?. 722+ 642°—642°

+w? 48a% —162%"

+w . 12zy*—8xy°z*

+  yyr—2)=0;
the section by the plane w=0 (veciprocal of B;) is w=0, y=0 (reciprocal of edge) four
times, together with w=0, y>—#*=0, reciprocals of the two rays.

148. The nodal curve is the line y=0, w=0 (reciprocal of edge counting as 3 lines);

0'=3. In factthe form of the surface in the vicinity is given by w= —;E,; y+4 55 2P,

viz. there are two sheets osculating along the line in question, that is intersecting in
this line taken 3 times.

149. For the cuspidal curve we have
12w?, 4zw, - daw
4zw, y+dow, —12u

—0,

(
'4
I
i
|

giving
12zw+43y* —42°=0,
36w +4wrz+y*2=0;

or multiplying the first by 3z and subtracting the second, we have 108w+ 42°=0.
Hence the equations are

2427w =0,
124w+ 8y*— 42°=0,

viz. the cuspidal curve is made up of three conics lying in planes through the line z=0,
w=0.
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The curve may be put in evidence by writing the equation of the surface in the form
(3924522 +12aw, 24z, 1678y — 42° 4122w, 2°4-2Tw?)*=0,
where -
16(8y2 45224 122w) — 1442 =16 (8y* — 424 1220w).
Section XI1=12—T,.
Equation W(X+Y+Z)*+XYZ=0. Article Nos. 150 to 156.

150. The diagram of the lines and planes is

Lines.
XII=12-T,. > g %:
I |
S 2
0 o e
1x32=32 © % . |Uniplane.
1 .
@ 2 * °° Planes each touching
g 3x 4=12 : along aray,and con-
~ : taining a mere line.
3 .
s (1103 e
5 5
3 25
= Es
# g
151. The planes are | The lines are
X +Y+Z=0, [0] X=0, Y +Z=0, (1)
X =0, [1] Y=0, Z +X=0, . (2)
Y =0, [2] 7.=0, X +Y=0, (3)
7 =0, 5] X=0, W=0, (1)
W=0, [ 12'31] Y=0, W=0, (2)
7. =0, W=0, 3

152. The three mere lines are each facultative: ¢=0=3; #=1.
153. Hessian surface. The equation is
(X+Y+Z(X2+ Y2+ 22— 2YZ— 27X —2XY) =0,
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viz. the surface consists of the uniplane X+Y+4Z=0 twice, and of a quadric cone
having its vertex at Uy, and touching each of the planes X=0, Y=0, Z=0.

The complete intersection with the cubic surface is made up of the rays each twice
and of a residual sextic, which is the spinode curve; ¢=6.

The equations of the spinode curve are

WX +Y+Z)7+XYZ=0,
Xo Y24 72— 2Y Z— 27X — 2XY =0,

viz. the curve is a complete intersection, 2 X 3.
Each of the mere lines is a single tangent (as at once appears by writing for instance
W=0, X=0, which gives (Y—Z)*=0); that is, 8'=3.

, Reciprocal Surface.
154. The equation is found by means of the binary cubic
4(T—2U)(T—yU)(T—2U)+wT*U,

viz. writing for shortness

B=x+y+z,
- y=yz+tzx+ay,
0 =ayz,

then the cubic function is
(12, w—4p, 4y, —123YT, U,

and the equation of the reciprocal surface is found to be

4328*

+ 04y’

—  (w—4p)%

+ T2(w—4B)yd

o — (w—4Bpr=0;
expanding, this is
w . —0
+w? J12B5—¢?

+8w . — 6%+ Ly +9y0 |
+  16(4B0—y—18Byd 49+ 270%)=0;
or substituting for (3, ¥, 8 in the first and last lines, this is
w® . —ayz
+w? . (1265—9?)
+8w. —660+By*+ 990
+ 16(—2P(s—a)a—y)=0
(where 3, v, d=x+y-2, y2+20+ay, xyz). The section by the plane w=0 (reciprocal
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of the unode) is made up of the lines w=0, y—z=0; w=0, 2—2=0; w=0, 2—y=0
(reciprocals of the rays) each twice. '

155. The nodal curve is at once seen to consist of the lines (=0, 2=0), (=0, 2=0),
(x=0, y=0), reciprocals of the facultative lines; in fact, in regard to (y, z) conjointly
v is of the order 1, and ¢ is of the order 2; hence every term of the equation is of the
order 2 in g, z; and the like as to the other two lines: &'=38 as above.

156. For the cuspidal curve we have

12, w—4B, 4y |
w—4B, 4y , —125 |

or say
48y —(w—4By =0,

363 4y (w—4p)=0,
whence the cuspidal curve is a complete intersection 2X 3; ¢ =6.
Section XIII=12—B,—2C,.
Equation WXZ+Y*(Y4X+7)=0. Article Nos. 157 to 164.
157. The diagram of the lines and planes is

Lines.
B
'{5 W [ %) [ < (=2 <
o1 [ 1) — (]
S A -
> ‘ —
XIII=12-B,-C,. I I i f I
% omd
o I =Y N 9
l e . :
2Xx 6=12 ° Biplanes.
s ; -
N N ® | Plane through the three
=12 °
056 |1x12=12 : ° axes.
5 N * Planes each through an
2X 6=12 ¢ axis joining the binode
L] L] L . '] . g
6 . . with a cnicnode.
g‘é’ °
ﬁ . Plane through the axis
341X 4= 4 N * joining the two cnic-
¢t nodes.
‘ ¢ Planes through the bi-
2 = .
12 1% 3= 3 : planar rays. - :
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158. The planes are _ The lines are

X =0, 1] X =0, Y =0, (5)
7 =0, [2] Z =0, Y =0, (6)

Y =0, [0566] Y =0, W=0, (0)
Y +X =0, [5] X =0, Y+Z =0, (1)
Y +7Z =0, [6] Z =0, Y+X=0, (2)
Y —W=0, [84] W=Y=-7, (3)
X 4+Y+47=0, [12] W=Y=-X, (4)
W=0, - [0] - W=0; X+Y4+Z=0, (012)

159. The transversal is facultative; ¢=8'=1, #=0.
160. The Hessian surface is
WXZBY+X+Z)+Y(Z—-X)=0.
The complete intersection with the surface is made up of theline Y=0, X=0 (CB-axis)
8 times; the line Y=0, Z=0 (CB-axis) 3 times; line Y=0, W=0 (CC-axis) twice,
and of a residual quartic, which is the spinode curve; o =4.
161. Representing the two equations by U=0, H=0, we have

(BY +X+7)U—~H=Y*(8Y*+4YX+Z+4X7Z), =MY* suppose,
and
2T(X4+Z) U+ 9IH=9WXZ(8Y +4X+44Z)4 36 Y’(X>+XZ 4 2) + 2TY (X +Z) ;
but : ‘
(—9(X+Z)Y +16XZ)M=
64X272+28YXZ(X +7)—Y?(36 X2+ 28XZ +367%) — 2TY} (X +Z),
whence
2T(X+7Z)U 4+ 9H+(—9IX +ZY+16X7Z)M
=7X{12Y*++28YX 4 Z+64XZ+9W(3Y +-4X +47)} ;
or, as this may also be written,
2TY (X 4-7Z)U +9Y’H
+(—9YX+Z+16XZ)(3Y +X+Z)U +(9YX+7Z—16X7Z)H,
that is,
{—OY(X+Z)P+48YXZ+16XZ(X4+Z)} U+ {9V + 9YX+Z—16XZ} H
=Y7ZX{12Y*+28YZ + X 4-64X7Z +9IW(8Y +4X+47)} =0;
and we thus obtain the equation of the residual quartic, or spinode curve, in the form
3Y*+4Y(X+7)+4X7Z=0,
12Y2+28Y(X +Z)+ 64X 7+ 9W(8Y + 4X 4 47)=0.

The spinode curve is thus a complete intersection, 2X 2 ; and since the first surface is a
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cone having its vertex on the second surface, we see moreover that the spinode curve is
a nodal quadriquadric. Instead of the last equation we may write more simply

4Y(X+7)+16X7+ 3W(8Y 44X +47)=0.
The equations of the transversal are W=0, X4+ Y 4Z=0, and substituting in the

equations of the spinode curve we obtain from each equation (X—7)*=0, that is, the
transversal is a single tangent of the spinode curve; '=1.

Reciprocal Surface.

162. The equation of the cubic is derived from that belonging to VI=12—B,—C,
by writing therein a=0=0, ¢c=4%, d=1. Making this change in the formule for the
reciprocal surface of the case just referred to, we have

L =y’ 4 4(z+2)w,
M=2a(y+2w),
N =—422,
P =162"(y+w—2—2);
and substituting in the equation
L?P 4 8zM*—92LMN — 2722wN>=0,
the equation divides by 2?; or throwing this out, the equation is
(v*+daw+4zw)(y+w—a—2)
— 8z2(y+2w)®
+ 9w2(y* 4 4aw + 42w )(y + 2w)
—2Tor**w=0;
reducing, this is
w® . 16(x—=z)
+w[ y(x+2)
+2y(a*—A4xz+27)
+(@+2)(20—2)(—a+22)
‘w( o ]
8y +2)
3 —29°(4a*+ 2302 45%)
+36ayz(v+-2)
L — 272 ]
+ P(y—2)y—2)=0.

The section by the plane w=0 (reciprocal of B,)is w=0, y=0 (the edge) 8 times;
and w=0, y—2=0; w=0, y—2=0 (reciprocals of the CB-axes).

163. Nodal curve. This is the line y=a=#; wherefore ¥=1. To put the line in

212

Y
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evidence, write for a moment =y +«, 2=y-+v, then the equation is readily converted
into

w® . 16(e—y)?
+w [ —y(e* —doy+7°) }
L+ (a+7)2e—y)(—a+2y)
+w J 9o —10ey+7%) l
—18yay(w+y)
—2Ta’y? J
+ Yay=0,

which, each term being of the second order in «, y(=&—y, 3—y) respectively, exhibits
the nodal line in question.
164. Cuspidal carve. Multiplying by 27, the equation may be written
(Ty—3x—3z—56w, —y-+6w, —wy*+16yw—122+ 2w 41607,

— 2094 24yx 42— 2702 — 8yw+ 16w?)* =0,
where

4w (Ty— 30— 3z—5w)+(—y + 6w) =1+ 16yw —12(x+2)w+16w?;
and we have thus in evidence the cuspidal curve,
9+ 16yw—12(z+2)w+16w*=0,
— 200+ 24y(x+42)— 272z — 8yw 4 16w*=0),

which is a complete intersection, 2 X 2, or quadriquadric curve; ¢'=4.
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Section XIV=12—B,—C,.
Equation WXZ+4Y?Z24YX?=0. Article Nos, 165 to 171.
165. The diagram of the lines and planes is

g4 N 5] 5
=
IR i I £
LS L L 2 2
MoK N
Il 1l Il Il 3
o o =) o
[N 1) ot =
XIV=12—B,—0,. b B IO By
w | o = =
Il Il I Il
o| « | 3| 3
Planes are .o
Z =0 12| 1x15=15 . . Torsal biplane.
X=0 01 | 1x20=20 * . | Ordinary biplane.
— , _ Plane through axis and
¥=0 023 1x10=10 the two ra§s.
3 45
21s2 B | &
B EE|® T
S =B *
[=7)
B |20
] ;:@
RN =

where the equations of the planes and lines are shown in the margins.

166. The edge is a facultative line, as will appear from the discussion of the reci-
procal surface: ¢=08'=1; ¢=0.

167. Hessian surface. The equation is

WX+ Y2 —3X°YZ 4 X =0.
The complete intersection with the surface is made up of the line X=0, Y=0 (the axis)
5 times, the line X=0, Z=0 (the edge) 4 times, and a skew cubic, the equations of
which may be written
‘ X, Y, W

l 47, X, —5Y

In fact from the equations U=0, H=0 we deduce H—ZU=X*X*—4YZ)=0; and if
in U=0 we write X*=4YZ, it becomes Z(XW+5Y?)=0; and then in 5U=0, writing
5Y?=—XW, we have
OSWXZ+4Z(—XW)+5XY =X(5XY+447ZW)=0.
168. I say that the spinode curve is made up of the edge X=0, Z=0 once, and of
the cubic curve; and therefore ¢’ =4.

=0.




310 PROFESSOR CAYLEY ON CUBIC SURFACES.

In fact in the reciprocal surface the cuspidal curve is made up of the skew cubic, and
of a line the reciprocal of the axis, being a cusp-nodal line, and so counting once as part
of the cuspidal curve: the pencil of planes through the line is thus part of the cuspidal
torse; and reverting to the original cubic surface, we have the axisas part of the spinode
curve: I assume that it counts once.

The edge is a single tangent of the spinode curve; §'=1.

Reciprocal Surface.
169. The equation is obtained by means of the binary cubic
qwZ}(Xoe+7Z2)+X(YZ—wX)?,
or, as this may be written,
(Bw?, —2yw, y*+4aw, 1220Y X, 7).
The equation is in the first instance obtained in the form
108w’
— 32w’z
+ 3b6wyz(y’+4aw)
+ @ +daw)
—  wy(y’t4daw)=0;
but the last two terms being together =4w’z(y*+4aw)’, the whole divides by 4w’, and it
then becomes ‘
27wz
— Swy’z
+ Ywyz(y*+4aw)
+ 2y +4ew)=0;
or, expanding, it is
w*. 272
. 36$yz+16w3
+w . 4 8%
+ zy*=0.

The section by the plane w=0 (reciprocal of B;) is w=0, y=0 (reciprocal of edge) 4
times, together with w=0, #=0 (reciprocal of biplanar ray).

The section by the plane z=0 (reciprocal of C,) is a(y*~44aw)*=0, viz. this is
2=0, y*+42w=0 (reciprocal of nodal cone) twice, together with 2=0, =0 (reciprocal
of nodal ray).

170. Nodal curve. This is the line w=0, y=0, reciprocal of edge. The equation in

the vicinity is y=— Z;w:}:\/ —giz w$, showing that the line is a cusp-nodal line count-

ing once in the nodal and once in the cuspidal curve: wherefore §'=1.
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171. Cuspidal curve. The equation of the surface may be written
(x, =y, 3wY12zw—y’, 2w+ 8ay)’=0,

where 4x.3w—y*=122w—y?.  This exhibits the cuspidal curve 12z2w—y°=0,
92w + 8ay=0, breaking up into the line w=0, y=0 (reciprocal of edge) and a skew
cubic; the line is really part of the cuspidal curve, or ¢'=4.

The equations of the cuspidal cubic may be written in the more complete form

12z, v, z |=0.
’ Y, w, —82

Section XV=12—-T,.
Equation WX?++X7?+Y*Z=0. Article Nos. 172 to 176.

172. The diagram of the lines and planes is

=7
7 ‘0=X
X 0=X

M0

aae soury

0
0
0

g
1

Qo -

X
01X1 |3
9L X1

XV=12-T,. ~
[

L
1
01
91

Planes are
X=0 21

1x40=40 Uniplane,

Plane touching along

Ix =35 the single ray.

2 45

‘aul] AIOTA
Kex o1durg
*Kex yesio,

where the equations of the lines and planes are shown in the margins.
178. The mere line is facultative: ¢=08'=1; ¢=0.
174. The Hessian surface is
X(XZ—-Y?*)=0,

viz. this is the uniplane X =0 twice, and a quadric cone having its vertex at U,.
The complete intersection with the surface is made up of X=0, Y=0 (torsal ray)
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6 times; X=0, Z=0 (single ray) 2 times; and of a residual quartic, which is the spinode
curve; o =4.

The equations of the spinode curve are XZ—Y*=0, XW427°=0; the first surface
is a cone having its vertex on the second surface; and the curve is thus a nodal quadri-
quadric.

The mere line is a single tangent of the spinode curve; g'=1.

Reciprocal Surface.
175. The equation is obtained by means of the binary cubic
(— 39, 29z, 4ow, 6yw X, Y),
viz. throwing out the factor 7, the equation is
wi(—642°)+w(—162%2"+T22y°2+27y* )+ 164°2°=0.

The section by the plane w=0 (reciprocal of U,) is w=0, z=0 (reciprocal of torsal
ray) three times, and w=0, y=0 (reciprocal of single ray) twice.

Nodal curve. This is the line =0, y=0, reciprocal of the mere line: ¢'=1.

Cuspidal curve, The equation of the surface may be written

(642, —162, — 3w 2>+ 2w, 9y°+ 422)*=0,
where
4.642(—3w)—2562"= —256(2*+ Saw).
This exhibits the cuspidal curve 2°+32w=0, 9y°4-422=0, where the surfaces are each
of them cones; the vertex of the second cone is on the first cone, and the two cones have

at this point a common tangent plane; the curve is thus a cuspidal quadriquadric.
176. [The equation

(642, —162, —3w(#*+ 3aw, 9y°+4z2)°'=0
resembles that of a quintic torse, viz. the equation of a quintic torse is
( 2 —42, SwNhe—2wx, y’'—2zx)=0,
which equation, writing 9y for y, —2¢ for #, and $w for w, becomes
(—22, —4z, 6w Y24 32w, 9y*+4z2)=0,
or, what is the same thing,
( @ 2z, =3wh*+3aw, 99°+420)*=0;

and developing, this is
2]

2% w?
+27. — 27w
+a. —18y*2w +-2*
— 2Ty w42y =0,
which, however, differs from the equation of the reciprocal surface, not only in the
nurmerical coefficients, but by the presence of a term a2 ]



PROFESSOR CAYLEY ON CUBIC SURFACES. 313

Section XVI=12—4C,.
Equation W(XY+XZ+YZ)4-XYZ=0. Article No. 177 to 180.
177. The diagram of the lines and planes is

Mo M oM M WM K N
+ + + 0L 0Lonononoun
4N K P L LSS
Lo« N g N g g e
SEE oo ww 3
KM M N © © © © © © z
+ -l; + 3
N g g
B
o o o
ond 4
- 9\: o . -
BER REREESS
o o =
XVI=12-4C,. X X
= -
I il
8 e 2
Planes are
Z +W=0 12 . e o
Y +W=0 13 . .o
Y +Z =0 14| 6x2=12 | » .. Planes each touching along
! an axis, and containing
X 4+W=0 23 . . a transversal.
X +Z =0 . 24 . .o
X +Y =0 34 . LA
X =0 ! Do
¥ =0 2 4x8=32 . . . Planes each through three |
7 =0 Py Xe=0o3 . . ol axes.
W=0 4 o -
XFY+24+W=0 124 | 1x1=1) « . . Plane through the three
i1 T : . : transversals.
=) b~
= - A
254 23
SEE 5
Er& <
<=2 5
T 5
Ry o
g5 8
o

where the equations of the lines and planes are shown in the margins.
178. The transversals are each facultative: o'=0=38; =1
179. Hessian surface. The equation is

AXY7ZW — (X +Y+Z+ W) WXY+WXZ+WYZ+XY7)= 0,
MDCCCLXIX. 27U
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or, what is the same thing,

X (YZ +YWHZW)
+Y2 (ZW +7ZX +WX)
+72 (WX+WY4XY)
+WiXY +XZ +YZ )=0.

The complete intersection with the cubic surface is made up of the six axes each twice,
and there is no spinode curve; ¢ =0, whence also 3'=0.

Reciprocal Surface.

180. The equation is immediately obtained in the irrational form

Va2 0=0,
or rationalizing, it is

(@ +y°+ 2+ w—2yz — 220 — 20y — 20w — 2yw— 22w )* — 64ayzw =0 ;

so that this is in fact STRINER’S quartic surface.

Nodal curve. This consists of the lines #—y=0, z2—w=0; 2—2=0, y—w=0;
r—w=0, y—2=0; so that =3

To put any one of these, for instance the line ¥ —y=0, z—w=0, in evidence, we may
write the equation of the surface in the form

[(2—9)*+ (=0 —2(@+)(240) ] — Bayw=0,

{@—gf+E—wf} {le—y)+(E—w)—4@e+y)+w)
+4[(x+y)(z+w)—16xyzw]=0,

{(x=g)+ —wfH(e—y)+(c—w) —4(z+y)(+w)}
+4{(x—y)(z—w)+4ay(z—w)’+ 42w(z —y)*} =0,

where each term is at least of the second order in #—y, z—w.
There is no cuspidal curve; ¢ =0.

that is

or finally
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Section XVII=12—2B,—C,.
Equation WXZ+XY?+Y?*=0. Article Nos. 181 to 185.
181. The diagram of the lines and planes is

5 N KoM o
| o o g
o2 o2 o8B
; Mo N
+ + o3
’ITI 'I-lq o © ©
o o
- (SR o
(50
XVII=12—2B,~0, X X X
oo o ©
Il I 1l
Planes are 8 = © ©
X =0 0|1x 6= 6 + + | Common biplane, through
o| theaxis joining the two
binodes.
Z =0 13 . o o
. . Remaining biplanes, one
W=0 24 12X 6=12| o .. for each binode.
Y =0 012 |1x18=18 o . o | Plane through the three
. axes.
X+Y=0 034 |11x 9=9| Plane through the axis
_ . * °| joining the two binodes.
5 45
o E |k
® = o K.
5’% ghd | g&
L SEE | g%
By &8 E: o E.
£ 5F | =
(<3 .

where the equations of the lines and planes are shown in the margins.
182. There is no facultative line; 8'=¢'=0, #=0.
183. The Hessian surface is

X(WXZ+3YZW +XY?) =0,

viz. this breaks up into X=0 (the common biplane), and into a cubic surface.
The complete intersection with the cubic surface is made up of X=0, Y=0 (BB-axis)
4 times, of Y=0, Z=0 and Y=0, W=0 (CB-axes) each three times; and of a residual
conic, which is the spinode curve; o/=2. The equations of the spinode curve are
Y*—3ZW=0, 4X4-3Y=0; viz. it lies in a plane passing through the BB-axis; since
there is no facultative line, 8'=0.
202
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Reciprocal Surface.
184. The equation is found to be
(y° + 42w )’ — P — 36ayzw 2722w =0,
or say this is
162°w* 4 (8y*— 36ay + 272*) 2w+ y*(y— ) =0.

The section by plane w=0 (reciprocal of B,=D) is w=0, y*(y—x)=0, viz. this is the
line w=0, y=0 (reciprocal of edge) 3 times, and the line w=0, y—a=0 (reciprocal of
ray) once; and the like as to section by plane z=0.

The section by plane #=0 (reciprocal of C,=A) is =0, (*+4zw)*=0, viz. this is
the conic (reciprocal of nodal cone) twice.

There is no nodal curve; 4'=0.

185. Cuspidal curve. The equation of the surface may be written

(1, —y, 32wy’ — 122w, 92—8y)’=0,
where 4.1. 3zw—9*=—(y*—122w); and there is thus a cuspidal conic y*—12zw=0,
92—8y=0: wherefore ¢'=2.

Attending only to the terms of the second order in g, z, w, the equation becomes
2*zw=0; that is, the point y=0, z=0, w=0 (reciprocal of the common biplane) is a
binode of the surface; or there is the singularity B'=1.
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Section XVIII=12—B,—2C,.
Equation WXZ+Y*(X+Z)=0. Article Nos. 186 to 189.
186. The diagram of the lines and planes are
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Planes are . . .
Y =0 0| 1x16=16 N * °  |Plane through the three axes.
X =0 01 . L]
7 = 02 | 2x12=24 . . *  [Biplanes,
X+72=0 34 . . Plane touching along édge and con-
Ix 3=3 . taining the mere line.

_ _ . .. Plane touching along axis through
W=0 04 {X 2= E . the two cnicnodes and containing
5 45 the mere line.
= = B >
@ O =3 5] 3 %%
E o= Po g B B g8
e 2 o £.3 2.8 5

S = P b ==
g o & 2.5 £ 3
Bl = | %e B
v aQ 0 @ CH-S

where the equations of the lines and planes are shown in the margins.
187. The mere line is facultative; the edge is also facultative counting twice (this

will appear from the discussion of the reciprocal surface): '=¢'=3, ¢'=1.
188. The Hessian surface is
(X+Z)YWXZ+ (X —-Z)yY*=0.
The complete intersection with the cubic surface is Y=0, Z=0 and Y=0, X=0
(the CB-axes) each 4 times; Y=0, W=0 (BB-axis) twice; and X=0, Z=0 (the edge)
twice. There is no spinode curve, ¢/==0; wherefore also 3'=0.

Reciprocal Surface.
189. The equation is obtained from the binary quadric 4w(X 4Z)(Xx+Zz2)+y*XZ, or

sa
y (Bwz, 4w(x+2)+197, 8wz X, Z).
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The equation is thus
(" + 4wz 4 4wz)*— 64wr2=0,

W+ 24/ wa 42/ wz=0.
The section by the plane w=0 (reciprocal of B,)is w=0, y=0 (reciprocal of edge)
4 times.
The section by the plane z=0 (reciprocal of C,=C) is 2=0, y*+4wa =0 (reciprocal
of nodal cone) twice; and similarly for the section by #=0 (reciprocal of C,=A).
Nodal curve. Writing the equation in the form
¥ 48wy’ (z+42) + 16w (2 — 2)’ =
we have a nodal line y=0, #—2=0, reciprocal of the mere line:
And writing the equation in the form

OEES +«/ z)? v
we have y= 0 w=0 (reciprocal of edge), a tacnodal line counting as two 11nes ; '=3.
There is no cuspidal curve; ¢'=0.
Section XIX=12—B;—C,.
Equation WXZ+4Y?7+4X*=0. Article Nos. 190 to 193.
190. The diagram of the lines and planes is

or in an irrational form

0=7'0=X
0=X ‘0=X
018 souly

XIX=12—B,~C,

SIXI
SIXT

ST
al

Planes are gl

Z=0 LI ]
1x15=15 . Oscular biplane.

1x30=30 e |Ordinary biplane.

g 15

*apouq oty Jo olpy
OPOTOLUD 9] PuUB
apourq oty Fururof spy

where the equations of the lines and planes are shown in the margins.
191. The axis isa facultative line counting 3 times (as will appear from the reciprocal
surface); ¢=0'=3, '=1.
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192. The Hessian surface is
Z(WXZ+YZ—3X%)=0,
viz. this is the oscular biplane Z=0 and a cubic surface.
The complete intersection with the cubic surface is made up of X=0, Z=0 (the edge)
6 times, and X=0, Y=0 (the axis) 6 times. There is no spinode curve, ¢=0;
-whence also 3'=0.
Reciprocal Surface.
193. The equation is at once found to be
642w+ (424 4aw)*=0.
The section by the plane w=0 (reciprocal of Bs) is w=0, y=0 (reciprocal of edge)
4 times. The section by the planez=0 (reciprocal of C,)is 2=0, 3>+ 4aw=0 (reciprocal
of nodal cone) twice.
Nodal curve. The equation gives
ivz

3
Xz

1
w:—‘—ﬁyﬁ: ys-l- &C.,

showing that the line w=0, y=0 (reciprocal of edge) is an oscnodal line counting as 3
lines; &'=3.
There is no cuspidal curve; ¢=0.
Section XX=12—-U,.
Equation X°W +X7?+4Y*=0. Article Nos. 194 to 197.
194. The diagram of the lines and planes is

0=X 0=X
ST SouIy

¢

XX=12—U,

g
e | Lg=LEX1

Plane is

X=0 0
1x45=45 e |Uniplane.
b 15

*Kex opdiry,

where the equations of the line and plane are shown in the margins.

195. There is no facultative line; &'=¢=0, ¢'=0.

196. The Hessian surface is X*Y =0, viz. this is the uniplane X=0, 3 times, and the
plane Y=0 through theray. The complete intersection with the cubic surface is made
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up of X=0, Y=0 (the ray) 10 times, and of a residual conic, which is the spinode

curve; ¢ =2,
The equations of the spinode conic are Y =0, XW +Z2=0, viz. the plane of the conic
passes through the ray. Since there is no facultative line, g'=

Reciprocal Surface.
197. The equation is at once found to be
27(2*+ 4ow)*— 64w’y =0.
The section by the plane w=0 (reciprocal of the Unode) is w=0, 2=0 (reciprocal of
ray 4 times.
There is no nodal curve; §'=0. But there is a cuspidal conic, y=0, 2*4- 4aw=0.
The point y=0, 2=0, w=0 (reciprocal of the uniplane X = O) is a point which must

be considered as uniting the singularities B'=1, x'=2.
I give in an Annex a further investigation in reference to this case of the cubic

surface.
Sectlon XXI=12—3B,.

Equation WXZ+Y?=0. Article Nos. 198 to 201.
198. The diagram of the lines and planes is

~ M =
Il I =
= =2 S B
N b B
3
[ oL L
XXT=12-8B,. |, "
X
©
1l
wl L\
N -
Planes are
B 3 . : : Common biplane containing
Y =0 0| 1x27=27 : : : the three axes.
X =0 1 * e
.
7 =0 2 . PO Remaining biplanes, one for
3x6 =18 . each binode. '
W:0 3 _ . e o o
4 45 .
o5
ch
o 2
5
Q e
g
&

where the equations of the lines and planes are shown in the margins.

199. There is no facultative line; ¢=¥§=0, ¢ =0.

200. The Hessian surface is XYZ VV;O, the common biplane and the other biplanes
each once. The complete intersection with the surface consists of the axes each 4
times; there is no spinode curve, ¢/=0; whence also '=0.



PROFESSOR CAYLEY ON CUBIC SURFACES. 321

Reciprocal Surface.

201. This is 2722w —y°=0, viz. it is a cubic surface of the form XXI=12—3B,
There is no nodal curve, §=0, and no cuspidal curve, ¢=0. Moreover B'=3.

Synopsis for the foregoing sections. Article No. 202,

202. T annex the following synopsis, for the several cases, of the facultative lines (or
node-couple curve) and of the spinode curve of the cubic surface; also of the nodal
curve and the cuspidal curve of the reciprocal surface. It is to be observed that in
designating a curve, for instance, as 18=4 X 6—2, this means that it is a curve of the
order 18, the partial intersection of a quartic surface and a quintic surface, but without
any explanation of the nature of the common curve 2 which causes the reduction, viz.
without explaining whether this is a conic or a pair of lines, and so in other cases; this
may be seen by reference to the proper section of the Memoir.

Facultative lines. Nodal curve. Spinode curve. Cuspidal curve.
I=12. i, 27 27 12=3%x4 24=6x4
II=12-C,.cceene 15 15 12=3x4 18=4x5—-2
III=12-B,............ 9 9 12=3x4 16=4x4-4
IV=12-2C, ......... 7 7 10=3x4~2 12=4x4-2-2
V=12=B,...ccoo0.... 7=>b+edge twice |7=>D5-rec. of edge twice, 10=3x4-2 i 12=4x4—4
rec. of edge tacnodal
Vi=12-R,-C,...... 3 3 9=8Xx4~2 10=4x4-4--2
VII=12-B;............ 3=24-edge 3=2+rec. of edge, 9=edge--unicursal 10=rec. of edge-+
rec. of edge is cuspnodal 8-thic unicursal 9-thic,
rec. of edge is cuspnodal
VIII=12-3C, ........ 3 3 6=2x3  6=2x3
IX=12-2B, ......... none none 8=4 conics 8=4 conics
X=12-B,—-C,...... 3=14-edge twice |3=1+rec. of edge twice, 6=2X3 6=2x3
rec. of edge is tacnodal
XI=12—-Bg.....ceeennt 3=edge 3 times 3=rec. of edge 3 times, 6=3 conics 6=3 conics
rec. of edge is oscnodal :
XII=12—-TU; ......... 3 3 6=2x3 6=2x3
XII1=12—B,~2C,... 1 ! 1 4=2X%2, nodal qua- | 4=2x2 quadriquadric
driquadric
X1v=12-B;-C, ... 1=edge 1=rec. of edge, 4=3+-edge 4=8+ rec. of edge,
rec. of edge is cuspnodal rec. of edge is cuspnodal
XV=12-TU, ......... 1 1 4=2% 2, nodal qua- | 4=2x2 cuspidal qua-
driguadric driquadrie
XVI=12-4C,......... 3 3 none none
XVII=12-2C,~C, ... none none 2= conic 2= conic
XVIII=12—-B,-C, ...| 3=1+4 edge twice 14 rec. of edge twice, none none
rec. of edge lacnodal
XIX=12-B;~C, ... 3= axis 3 times 3= rec. of axis 3 times, none none
rec. of axis oscnodal
XX=12-U, ......... none none 2= conic 2= conie
XXI1=12-3B,......... none none none none

I pass now to the two cases of cubic scrolls.
MDCCCLXIX. 92 x
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Section XXII=5(1,1). Equation X>*W+Y*Z=0. Article No. 203.

203. As this is a scroll there is here no question of the 27 lines and 45 planes; there
is a nodal line X=0, Y=0, ()=1) and a single directrix line, Z=0, W=0.

The Hessian surface is X*Y?=0; the complete intersection with the cubic surface is
made up of X-=0, Y=0 (the nodal line) 8 times, and of the lines X=0, Z=0, and
Y =0, W=0, each twice.

The reciprocal surface is a’2—y*w=0; viz. this is a like scroll, XXII=S(1, 1);
d=0, =

Section XXIIT=S(1, 1). Equation X(XW+YZ)+Y*=0. Article No. 204.

204. This is also a scroll; there is a nodal line X=0, Y=0, and a single directrix
line united therewith.

The Hessian surface is X*=0; the complete intersection with the cubic surface is
X =0, Y=0 (the nodal line) 12 times.

The reciprocal surface is w(arw—+yz)—2°=0; viz. thisisa like scroll, XXIII= S( 1);
=0, §=1.

Annex containing Additional Researches in regard to the case XX=12—U,; equation
' WX+ X724+ Y*=0.
Let the surface be touched by the line (@, 8, ¢, f;, ¢, &), that is, the line the equations

whereof are

(0, h —g aXX,Y,Z W)=0.

—h, 0, f, 0
ga ‘—fa Oa 4
—-a, —b, —¢, 0

Writing the equation in the form ¢W. eX?+X(cZ)+¢*Y?=0, and substituting for
sW, ¢Z their values in terms of X, Y, we have

(—gX+fY)eX2+ X (aX + Y )*+c*Y* =0,
(@*—cg, 2ab+cf, 0, X, Y)*=0,
(3(a*—cyg), 2ab+cf, b*, 3¢"YX, Y)*=0,

that is

or say

viz. the condition of contact is obtained by equating to zero the discriminant of the
cubic function. We have thus

27c (a*—cq)?
+ 40%a*—cyg)
+ 4¢2ab+of )
—  B(2abtofy
—180%*(a*— ¢g)(2ab +¢of ) =0,
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+27a%c?
— 4a°0®
+ 30a?b%cf
—b4a’cy
-+ 36ab’cqg
+24abc’f*
+ 45°h

— 154
+188%c*fy
+27¢'¢*
+ 4f°=0,
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which is the condition in order that the line (e, 8, ¢, f, ¢, k) may touch the surface
X*W4X724Y*=0; and if we unite thereto the conditions that the line shall pass
through a given point («, 3, v, 8), we have in effect the equation of the circumscribed

cone, vertex (e, (3, ¥, 9).

Writing (£, ¢, &, a, b, ¢) in place of (e, b, ¢, f, ¢, h), we obtain

as the condition that the line (@, b, ¢, f, ¢, #) shall touch the reciprocal surface

27 il
— 47
+30 f*g*ha
—54 1%
+36 Fyhb
+24 foba®
+ 4 ¢°c
-1 g“azl
+18 g*hab
+27 hif*
+41*a*=0

27(4aw + 22y + 64y*w=0;

ana if we consider @, b, ¢, f, ¢, k as standing for

vy —PB2, ez —yz, fr— oy, dx—ow, Sy—pLw, dz—yw,

values which satisfy the relation

( O? k? -!], a I“? ﬁp 7 8)20,

—h, 0, f B
ga —J 0, a
—a, —b, —c¢, O
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then the equationin (a, b, ¢, f; ¢, k) is that of the circumscribed cone, vertex («, 8, 7, 8);
the order being (as it should be) ' =6.

The cuspidal conic is y=0, 4aw+2*=0, and we at once obtain a*—4cg=0 as the
condition that the line (a, b, ¢, f, ¢, %) shall pass through the cuspidal cone. Hence
attributing to (a, b, ¢, f, ¢, k) the foregoing values, we have

@’ —4cg=0
for the eqution of the cone, vertex («, 3, ¥, 9), which passes through the cuspidal conic;
this is of course a quadric cone, ¢=2. T proceed to determine the intersections of the
two cones.

Representing by ®=0 the foregoing equation of the circumscribed cone, and putting
for shortness .

X=2Tk( f*—0h)—2¢°(2fg +ah),
I find that we have identically
O—(f*—0h)X +(g' — 4ah’ — 8fygh*)(a* — 4ey)
—(32fg*h+16agh?)(af 4 bg+ch)==0:
whence in virtue of the relation af+4bg+ch=0, we see that the equations @==0,
@*—4cg=0, are equivalent to
(f*—0h)X=0, a*—4cg=0,
or the twelve lines of intersection break up into the two systems
J?=0h=0, a>—4¢g=0,

and
(X=) 2TH(f*—0h)—2¢%(2fg+ah)=0, a*—4cg=0.

To determine the lines in question, observe that we have

( 0, ha -—q, @ I“: Ba Y B):O’

—h, 0, f, &
g9~ 0, ¢
—-a, —b, —c¢

and we can by the first three of these express @, b, ¢ linearly in terms of f, ¢, k; the
equations f*—0h=0, @’—4cg=0, 27Th*(f*—bh)—2¢*(2f9+ah)=0 become thus homo-
geneous equations in (f, ¢, A); the equations may in fact be written

¥(a*— dog)=(7"+4ad)g* + *— 2By gh— 4B¥f =0,

8 (f?—0bh) =0df*—ah*+yhf=0,

X =2TH(3f*—ah* + yhf' ) + 29°(Bh* — ygh— 23fg) =0,
viz. interpreting (f, ¢, #) as coordinates in plano, the first equation represents a conic,
the second a pair of lines, and the third a quartic.

‘We have identically

128% — (o + 4ad)g + Byh ) — 4GB * — i + i)
= ("4 43) (o + 4ed)g? + B — 2By gh— 4BUF } 3
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and it thus appears that the two conics touch at the points given by the equations
Of* —eh®+ yhf =0,
2088 —(y*+4ad)g+Byh=0:

we have moreover
— (5 ) (B — ygh— 2 = APAS* — i+ f
+ (=25 —yh)[ 260 —(v* + 4ed)g +Byh],
hence at the last-mentioned two points —Bh* +ygh+23fy is =0; and the quartic X=0

thus passes through these two points.
The conic (a>—c¢g)=0 and the quartic X=0 intersect besides (as is evident) in the

point g=0, A=0 reckoning as two points, since it is a node of the quartic; and they
must consequently intersect in four more points: to obtain these in the most simple
manner, write for a moment
Q=— (7" +4ad)g’ + 77,
then we have identically
16332 0f — i+ yf ) — 2= — (5 + 4ad) P+ B+ 4P (h 20 )

= —{(y*+4ad)g*+ B — 2By gh—4B3f g} {(v* + 4od)g” + B+ 2Bygh+ 4B¥ g}

= —8(a*—4¢g){(y*-+4ad)s*+Bh*+2Bygh + 480y };
and moreover

2B(BR—24fg—ygh) — Q=(y* + 4ad)g* + 31> — 2Bygh— 4B8fg =3(a" — 4cy).
Hence when @’—4¢g=0, we have
2 2 QQ 2 — Q K
of *— ok +?’kf=W, R —23fg—ygh 28’
and substituting these values in the equation X =0, it becomes
0 ..0
27h. m—l-zg .Q-B=O,

viz. multiplying by 168%, and oﬁitting the factor 2, this is

271*Q +16838¢* =0,
or finally
1683¢* —27(y*+ 4ad)g*h* + 273k =0,

a pencil of four lines, each passing through the point =0, A=0, and therefore inter-
secting the conic '
(7 +4ad)g>+ B — 2By gh—4B38hf =0
at that point and at one other point; and we have thus four points of intersection, which
are the required four points.
Recapitulating, the conic a*—4¢g=0 meets the sextic (*—5&k)X=0 in the two points
{sz--ukz—l-ykf::(),

<,

|25 — (y*+4ad)g + Pyh=0
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each three times, in the point =0, A=0 twice, and in the four points
J1663g4—27(72+ 4od)g?h*+ 273 =0,
(92 + 4ed)g* + B2h— 2By gh— 4B3hf =0

each once. Or reverting to the proper significations of (&, b, ¢, f, ¢, &), instead of points,
we have 2 lines each three times, a line twice, and 4 lines each once ; the line =0, A=0,

that is, =0, A=0, a:O,bbeing, it will be observed, the line g:;:'g drawn from

B
(@, 3, ¥, 8) to the point y=0, 2=0, w=0, which is the reciprocal of the uniplane X=0:
the twelve lines are the &/¢ lines of intersection of the circumscribed cone ¢ with the
cuspidal cone ¢, viz. @'¢' =[a'c|+ 3¢’ +y; [@¢'¢']=4 referring to the last-mentioned four
lines; #=2 to the two lines; and 5/=2 to the line ¢=0, 2=0, =0, which it thus
appears must in the present case be reckoned twice.



